Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Pružnost a pevnost Kvadratické momenty složených průřezů 07

Podobné prezentace


Prezentace na téma: "Pružnost a pevnost Kvadratické momenty složených průřezů 07"— Transkript prezentace:

1 Pružnost a pevnost Kvadratické momenty složených průřezů 07
Technická mechanika Pružnost a pevnost Kvadratické momenty složených průřezů 07 Ing. Martin Hendrych

2 Anotace Materiál seznamuje žáky s charakteristikou a postupem stanovení kvadratických momentů složených průřezů. Umožňuje použití pro samostatnou práci. Je možné jej poskytnout nepřítomným žákům. Autor Ing. Martin Hendrych (Autor) Jazyk čeština Očekávaný výstup 23-41-M/01 Strojírenství Speciální vzdělávací potřeby - žádné - Klíčová slova kvadratický moment, kvadratický moment složeného průřezu Druh učebního materiálu prezentace Druh interaktivity kombinované Cílová skupina žák Stupeň a typ vzdělávání odborné vzdělávání Typická věková skupina let Vazby na ostatní materiály je součástí STR_TEM_Pruznost a pevnost

3 Kvadratické momenty složených průřezů
Při výpočtu platí zásada: Kvadratické momenty průřezu lze slučovat tehdy a jen tehdy, jsou-li vztaženy ke společné ose! U složených obrazců rozlišujeme dva základní případy: Dílčí plochy mají společnou osu souměrnosti Dílčí plochy nemají společnou osu souměrnosti

4 Plochy MAJÍ společnou osu souměrnosti
Pak platí vztah n … počet ploch Řešení si ukážeme na konkrétní úloze.

5 Plochy MAJÍ společnou osu souměrnosti
Úloha: Stanovte složené plochy podle obrázku.

6 Plochy MAJÍ společnou osu souměrnosti
Pro úlohu platí

7 Plochy NEMAJÍ společnou osu souměrnosti
Jestliže nemají plochy společnou osu souměrnosti, pak všechny kvadratické momenty průřezu dílčích ploch musíme převést z jejich těžišťových os na rovnoběžnou společnou neutrální osu a teprve pak je sloučit.

8 Plochy NEMAJÍ společnou osu souměrnosti
Pak platí vztah n … počet ploch

9 Plochy NEMAJÍ společnou osu souměrnosti
Pro řešení úloh tohoto typu je možno definovat obecný postup:  Zjistíme početně nebo graficky polohu těžiště daného složeného průřezu (viz Statika). Rozdělíme průřez na základní obrazce, u kterých umíme kvadratické momenty průřezu určit, nebo je známe. Určíme kvadratický moment průřezu každé dílčí plochy k ose procházející jejím těžištěm, rovnoběžné s centrální osou.

10 Plochy NEMAJÍ společnou osu souměrnosti
Kvadratické momenty průřezu dílčích ploch převedeme pomocí Steinerovi věty na centrální osu. Převedené kvadratické momenty dílčích ploch sloučíme a dostaneme celkový kvadratický moment průřezu. Z kvadratického momentu vypočítáme průřezový modul v ohybu.

11 Literatura a zdroje informací
MRŇÁK, Ladislav a Alexander DRLA. MECHANIKA: Pružnost a pevnost. 3., opravené vydání. Praha: SNTL, 1981.


Stáhnout ppt "Pružnost a pevnost Kvadratické momenty složených průřezů 07"

Podobné prezentace


Reklamy Google