Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Interakce ionizujícího záření s hmotou

Podobné prezentace


Prezentace na téma: "Interakce ionizujícího záření s hmotou"— Transkript prezentace:

1 Interakce ionizujícího záření s hmotou
Srážky IZ s částicemi prostředí Pružné (celková Ekin se zachovává) Thomsonův – Rayleighův rozptyl Nepružné (celková Ekin se nezachovává) Jaderné reakce, záchyt elektronu Ionizace, excitace (elektronové brzdění) Radiace (brzdné zář., Čerenkovovo zář.) Polarizace atomů (efekt hustoty) Přímo ionizující záření Nabité částice, např. , , p, d, ionty Nepřímo ionizující záření Částice bez el. náboje, např. fotony, n

2 Druhy záření Těžké nabité částice Elektrony Elektromagnetické záření
Hlavně nepružné srážky s elektronovým obalem atomu – excitace, ionizace Elektrony Hlavně nepružné srážky s obalem a pružné srážky s jádry Elektromagnetické záření Sekundární ionizace elektrony Neutrony Interakce s jádry – pružný a nepružný rozptyl

3 Interakce IZ s látkou Co se stane s částicemi záření (dolet, přeměna)
Co se stane s látkou (ionizace, vznik sekundární aktivity, radiační poškození, atd.) Základní veličiny charakterizující průlet Dosah (dolet) částice látka ne ... hustota elektronů (cm-3) ... střední budící potenciál

4 Dolet těžkých nabitých částic
Dráha je přímá Částice nejprve přicházejí o část kinetické energie, ale pokračují v průniku, absorpce nastává až tehdy, když kinetická energie klesne na energii srovnatelnou s ionizační Extrapolovaný dolet Střední dolet

5 Dolet těžkých nabitých částic
Maximum ionizace nastává krátce před doletem Kinetická energie částice srovnatelná s ionizační Malá rychlost částice  dlouhý interakční čas Význam pro ozařování Ionizační energie vzduchu ~ 34 eV ~ 104 iontových párů na 1 cm dráhy  částice ve vzduchu Braggova křivka

6 Dolet částic 

7 Dolet těžkých nabitých částic
Empirické vztahy – dosazujeme přímo číselnou hodnotu energie v uvedené jednotce (MeV), výsledek vyjde rovněž přímo v uvedené jednotce (cm). Převodní faktory již jsou zahrnuty v číselných hodnotách koeficientů. Proton se zastaví na delší dráze než částice  o stejné energii

8 Dolet těžkých nabitých částic
Určete dolet částice  o rychlosti 1,5.107 m/s ve vzduchu. Hmotnost částice a je 4,0026 mu, mu=1, kg Empirický vztah Kinetická energie

9 Dolet těžkých nabitých částic
Kolik iontových párů vznikne za 1 s v detektoru, na který dopadá primární záření  o intenzitě 1 Ci = 3, Bq a energii 4,67 MeV? Ionizační energie vzduchu je 34 eV. Pohlcením jedné částice vznikne 4,67 MeV/34 eV = párů, pohlcením 3, částic za 1 s vznikne , = 5, iontových párů za 1 s

10 Dolet lehkých nabitých částic (e-,e+)
Dráha je lomená Mnohonásobný coulombický rozptyl na jádrech nebo obalových elektronech, podíl účinných průřezů Zeslabení svazku (útlum) je dáno absorpcí i rozptylem iontových párů na 1 cm dráhy e- ve vzduchu R

11 Dolet lehkých nabitých částic (e-)
Útlum intenzity svazku Přibližně exponenciální pro nehomogenní svazek elektronů (-záření) Omezený dolet monoenergetických elektronů (urychlovač, fotoefekt) monoenergetické elektrony nehomogenní svazek

12 Dolet lehkých nabitých částic (e-)

13 Absorpce záření  Lineární součinitel zeslabení  = střední volná
dráha zeslabení na 1/e = polovrstva zeslabení na ½ : F-E jev : celkem : tvorba párů : Compton

14 Absorpce záření  Fotoelektrický jev dominuje při nízkých energiích ~ do 0,5 MeV Comptonův jev dominuje při energiích primárního fotonu ~ 0,5- 5 MeV Tvorba elektron-pozitronových párů dominuje při vysokých energiích ~ nad 5 MeV Minimální energie fotonu 1,02 MeV Ve všech případech dochází ke vzniku sekundárního elektronového záření !

15 Absorpce záření  Lineární součinitel zeslabení 

16 Detektory ionizujícího záření (IZ)
Údaje získané měřením detektory IZ Dávka IZ, dávkový ekvivalent a příkon dávkového ekv. Aktivita zdroje (počítač) Druh a energie záření (spektrometr) Volba detektoru IZ Druh IZ Energie IZ Velikost měřené aktivity Mrtvá doba detekčního zařízení, účinnost detekce Forma, množství a skupenství vzorku Požadovaná přesnost měření Energetické rozlišení, prostorové rozlišení Pozadí, šum

17 Jednotky ionizujícího záření (IZ)
Absorbovaná dávka, gray, Gy, 1 Gy = 1 J/kg Střední množství energie odevzdané prostředí, vztažené na jednotkovou hmotnost Starší jednotka rad (radiation absorbed dose), 1 Gy = 100 rad Kerma Obdoba absorbované dávky, ale uvažuje pouze energii předanou primárním zářením Dávkový ekvivalent, J/kg Stejná jednotka jako absorbovaná dávka, ale uvažuje rozdílný biologický účinek různých druhů záření o stejné energii Absorbovaná dávka se násobí následujícími bezrozměrnými koeficienty Gama záření, elektrony: 1 Neutrony, protony: 10 Částice alfa, částice s více než jedním nábojem: 20

18 Jednotky ionizujícího záření (IZ)
Dávková (kermová) rychlost, Gy/s = J/kg/s Absorbovaná dávka (kerma) vztažená na jednotkový čas Dána intenzitou (počet částic za 1 s) a energií dopadajícího záření Expozice, C/kg Udává množství vzniklého náboje (stejně velkého kladného a záporného) vzniklé v 1 kg vzduchu vlivem rentgenového nebo  záření Starší jednotka 1 R = 2, C/kg Množství vzniklého náboje je úměrné absorbované energii Expoziční rychlost, C/kg/s Míra intenzity rentgenového nebo  záření

19 Volba detektoru ionizujícího záření (IZ)
Scintilační det. (NaI(Tl) – det. účinnost 20-60%) G-M méně vhodný pro nižší aktivity (účinnost 1-2 %) Velikost detektoru – čím větší účinnost, ale i větší pozadí (šum) Polovodičové detektory (Ge, Si, Ge(Li)) – vysoká rozlišovací energetická schopnost Velké nároky (zvláště při měření nízkých aktivit) klademe nejen na detektor, ale také na příslušné elektronické části detekčního zařízení (nízký šum, velká stabilita, atd.)

20 Detektory ionizujícího záření (IZ)
Prostředky detekce Zviditelnění drah jednotlivých částic IZ Wilsonova mlžná komora, bublinová komora, fotografické emulze, jiskrová komora Přeměna energie IZ na světlo Scintilační detektory, Čerenkovovy detektory Tvorba elektrického proudu a jeho měření Plynové detektory – ionizační komory, proporcionální det., Geiger-Müller (G-M) det. Polovodičové detektory – germaniové, křemíkové Integrální Termoluminiscenční Filmové

21 Wilsonova mlžná komora
Kondenzace nasycených par a vytváření malých viditelných kapiček na iontech vytvořených podél dráhy rychlé nabité částice) Konstrukce Uzavřená komora s okny pro pozorování drah resp. fotografování, zaplněná plynem s příměsí nasycených par kapaliny, např. metylakoholu  rychlá adiabatická expanze  ochlazení plynu  přesycená pára  kondenzace na iontech Pozorovat lze jen krátce po adiabatické expanzi Tento nedostatek odstraňují difuzní mlžné komory – mezi dnem a vrškem objemu se udržuje tepelný gradient Pomocí mlžné komory objevil r Anderson první antičástici – pozitron (v kosmickém záření) Komory se umisťují např. do magnetického pole  náboj, hybnost částice

22 Bublinová komora Místo plynu kapalina – hustější látka, efektivnější detekce Konstrukce Uzavřená komora s kapalinou zahřátou těsně pod bod varu  rychlé snížení tlaku  přehřátý (metastabilní) stav kapaliny  průlet nabité částice  vznik iontů = nehomogenit  var kapaliny v okolí nehomogenit  tvorba bublinek páry Náplň Kapalný vodík (kapalné deuterium) pro interakci protonů Kapalný propan Kapalný Xe, freón pro interakci neutrin

23 Jaderné emulze Emulze s vysokou koncentrací AgBr  po průletu nabité částice uvolňování Ag  latentní obraz  vyvolání Tloušťka až 1000 m

24 Plynové detektory Detekce prošlého náboje (proudu) kondenzátorem v důsledku ionizace plynné náplně Charakteristiky detektoru závisejí na režimu plynového det. podle voltampérové charakteristiky Oblasti: A) rekombinace iontových párů B) nasyceného proudu (ioniz. komory) C) proporcionality (proporc. det.) D) omezené proporcionality E) Geiger-Müllerova (G-M) detektory F) trvalý výboj (koronové detektory) katoda anoda katoda anoda

25 Plynové detektory

26 Plynové detektory Oblasti: A) rekombinace iontových párů
Vzniklé iontové páry rekombinují, pouze části z vzniklých iontů dorazí na elektrody Vyšší napětí  větší intenzita a elst. síla  více iontů dorazí na elektrody před rekombinací  proud je úměrný napětí (Ohmův zákon) B) nasyceného proudu (ioniz. komory) Všechny vzniklé ionty stihnou dorazit na elektrody před rekombinací  proud nezávisí na napětí, ale pouze na intenzitě záření C) proporcionality (proporc. det.) Ionty vzniklé ionizací mají dostatečnou energii, aby samy ionizovaly další atomy  celkový počet iontů je úměrný (proporcionální) pohlcené energii částice v detektoru

27 Plynové detektory Oblasti: D) omezené proporcionality
E) Geiger-Müllerova (G-M) detektory Lavinovitý vývoj počtu iontů, napětí je natolik vysoké, že jeho vlivem dostávají ionty další energii k ionizaci Proud již není úměrný pohlcené energii částice F) trvalý výboj (koronové detektory)

28 Ionizační komory (IK) Založeny na principu kondenzátoru, pracují v oblasti nasyceného proudu Plněné plynem (vzduch, H2, He, apod.) při tlaku vyšším i nižším než je atmosférický Proudové IK, statické IK A) Měření proudu (toku náboje, tj. částic) I=Q / t I=e.N0.pave e ... elementární náboj N0 ... počet absorbovaných ioniz. částic za 1 s pave ... průměrný počet iont. párů vytvoř jednou ioniz. č.

29 Ionizační komory (IK) B) Měření poklesu napětí vlivem jednotlivých částic Impulzní IK U=Q/C=e.pave/C Aplikace IK Detekce silně ionizujících částic () Měření vysokých aktivit Detekce  (elektrony uvolněné v obalu IK dále ionizují) Detekce neutronů (nabité částice vznikají při interakci neutronů s vhodnou náplní IK nebo stěnami IK) Měření dávek IZ – osobní dozimetr (měří se úbytek napětí po určité době) U ... změna napětí při průletu jedné částice C ... elektrická kapacita IK

30 Ionizační komory (IK) Jak velký elektrický proud protéká ionizační komorou detekující záření  o intenzitě 1 Ci = 3, Bq a energii 4,67 MeV? I=Q / t I=e.N0.pave e ... elementární náboj N0 ... počet absorbovaných ioniz. částic za 1 s pave ... průměrný počet iont. párů vytvoř jednou ioniz. č. Dosazením pave = a N0 = 3, s-1 plyne I=2.1, , = 1,63 mA

31 Ionizační komory (IK) Jaký bude pokles napětí na kondenzátoru ionizační komory po absorpci částice  o energii 4,67 MeV? Kapacita kondenzátoru je 22 pF. Impulzní IK U=Q/C=e.pave/C U ... změna napětí při průletu jedné částice C ... elektrická kapacita IK Přímým dosazením s použitím znalosti, že k absorpci jedné částice o energii 4,67 MeV ve vzduchu o ionizační energii 34 eV je zapotřebí srážek

32 Proporcionální počítače
Pracovní náplň: H2,He, Ar, Xe,CH4,směsi, příměs par alkoholu Napěťový signál roste na odporu R  menší nároky na elektroniku oproti IK, které měří přímo úbytek U Rozlišovací doba = čas. interval od průletu částice do objevení výstupního impulzu ~ (5-10) s (kratší než u IK) Energetické rozlišení ~ 15 % Účinnost registrace ~100 % pro těžké nabité částice, nižší pro elektrony, (0,1-1) % pro n,  Použití - , , , n (BF3, 3He, H2)

33 Geiger-Müllerovy počítače
Lavinovitá ionizace Impulzy stejně velké, nezávislé na energii částice Nutnost rychlého zhášení výboje – souvisí s mrtvou dobou Nesamozhášecí – ionizace se přeruší po poklesu napětí pod určitou hodnotu (zhášecí elektronický obvod) Samozhášecí – přídavek mnohoatomového plynu, obv. organické páry (alkohol) – až 10 % Při každém impulzu se část par disociuje  doba života ~ 108 – 1010 impulzů

34 Scintilační detektory
Již na začátku 20. století – vizuální pozorování záblesků, ZnS (Rutherford) Dnes – automatická registrace záblesků (scintilací) přes fotonásobič Scintilace = vznik fotonů v oblasti viditelného nebo UV světla při průchodu IZ scintilátorem (excitace a ionizace  návrat do zákl. ener. stavu  vyzáření fotonů) Scintilátor Organický, anorganický Plynový, kapalný, pevný scintilátor světlovod násobič foto- elektronika

35 Scintilační detektory
scintilátor světlovod násobič foto- elektronika Parametry scintilátorů Doba scintilačního záblesku Amplituda scintilačního záblesku (spektrometrie) Etapy funkce scintilátoru 1. Absorpce dopadajícího záření scintilátorem 2. Scintilační proces (přenos energie dopad. zář. na emisi scintilačních fotonů) 3. Přenos scintilačních fotonů na fotokatodu 4. Vznik fotoelektronů 5. Sběr fotoelektronů na 1. dynodě fotonásobiče 6. Násobící proces ve fotonásobiči 7. Elektronické zpracování proudového impulzu

36 Scintilační detektory
Fotonásobič Zesílení elektrického proudu uvolněním dalších elektronů opakovaným nárazem elektronu na dynody Napěťový dělič -900 V -700 V -500 V -300 V -100 V - fotokatoda -800 V -600 V -400 V -200 V anoda

37 Organické scintilační detektory
Využívají excitace -elektronů v aromatických molekulách Fluorescence ~ s Zpožděná fluorescence ~10-6 s, přechod přes metastabilní stavy Fosforescence ~10-4 s, fotony s nižší energií Unitární Čisté krystaly (antracen, transstilben), méně kapaliny (xylen) Binární Dvousložkové roztoky v kapalné i pevné formě (p-terphenyl v toluenu, p-terphenyl v polystyrenu) Primární proces excitace nastává v primární složce, migrace excitační energie do sekundární složky, kde nastává scintilace  eliminace samoabsorpce Objemově převládá primární složka Terciální Terciální složka zajišťuje, aby se scintilační spektrum krylo se spektrální citlivostí fotokatod Použití Detekce či spektrometrie  (i nízkoenergetické) Detekce či spektrometrie rychlých n (En  0,1 MeV), reakce (n,p)

38 Anorganické scintilační detektory
Aktivované malou koncentrací příměsi Tl (thalium), Al u alkalických kovů NaI(Tl), ZnS(Ag) Ag, Cu u sirníků Samoaktivované Nadbytek základních iontů – Zn, Cd ZnS, CdS Použití NaI(Tl) – hlavně detekce a spektrometrie RTG,  CsI(Tl) – hlavně detekce a spektrometrie těžkých nabitých částic 6LiI(Eu) – detekce pomalých n relativně nevhodné pro elektrony (zpětný rozptyl, brzdné záření)

39 Kapalná scintilační spektrometrie
Radioaktivní vzorek se přimíchá do vhodného rozpouštědla (toluen), v němž se nachází scintilační látka (fluor), která vlivem záření vysílá světelné fotony Autoradiografie Objekt se přiloží na film, který se vyvolá Mikroobjekty (buňky) – spec. fotoemulze, která se nanáší přímo na preparát A) Vyhodnocení zčernání mikroskopem (AgBr) Předexponování filmu, nízké teploty (-70 ºC) B) Skenováním laserem Emulze s BaFBr(Eu), vyzáření modrého světla vlivem červeného laserového světla

40 Termoluminiscenční dozimetry
Luminiscenční skla Poruchy v krystal. mřížce vyvolává IZ (černání skla ozářeného silnou dávkou) Poruchy vybudíme UV světlem a měříme intenzitu emise Termoluminiscenční dozimetry Excitované krystaly (CaF), kdy je e- odtržen IZ od mateřského atomu a zapadne do energetické pasti Dodáním energie zahřátím se e- navrátí (rekombinace) → vyslání světla

41 Čerenkovův detektory Obdoba scintilačního detektoru
Emise světla způsobená průletem rychlé nabité částice průzračným prostředím (dielektrikem) Atomy prostředí se na chvíli polarizují a při návratu do normálního stavu dojde k vyzáření fotonu Podmínkou c ... rychlost světla ve vakuu (3.108 m/s) c´ ... rychlost světla v dielektriku n ... index lomu dielektrika

42 Čerenkovův detektor Směr vysílání Čerenkovova záření
Umožňuje registrovat částice s určitou rychlostí s velkou přesností (0,01 %) fokusací světla z určitého směru na fotokatodu Detekce  - nejdříve konverze na elektrony (např. v olovu) Téměř 100% účinnost

43 Čerenkovův detektor Pod jakým úhlem bude vysílat Čerenkovovo záření částice o rychlosti m/s v látce s indexem lomu n = 1,7? Pod jakým maximálním úhlem bude možné pozorovat Čerenkovovo záření v detektoru s indexem lomu n = 1,7?

44 Polovodičové detektory
Výhody Detektorem pevná látka  velká detekční účinnost, pohlcení i částice s velkou energií Malé rozměry  výborné prostorové rozlišení Nízká energie na vytvoření páru nositelů náboje (~3 eV)  vysoké energetické rozlišení Vysoký měrný odpor látky  malý stálý proud (šum) Dostatečná pohyblivost nositelů nábojů Monokrystaly Si, Ge – příliš malý měrný odpor při pokojové teplotě Udržování detektoru při nízké teplotě (kapalný dusík) Přechod P-N v závěrném směru Oblast zbavená volných nositelů nábojů, zvětšena vnějším polem

45 Polovodičové detektory
Polovodič typu N – příměs látky s nadbytečným valenčním elektronem Příměs arsenu v germániu (As v Ge) Polovodič typu P – příměs látky s chybějícím valenčním elektronem Příměs gália v germániu (Ga v Ge)

46 Polovodičové detektory
Přechod P-N Ionizací vznikne v ochuzené vrstvě e- v P a díra v N, které procházejí přes P-N přechod  proud N→P Bariérový křemíkový polovodičový det. Citlivá vrstva 0,2~0,5 mm Pokojová teplota Detekce těžkých nabitých částic (p, , štěpné fragmenty) P N + + - - + - + - + - + -

47 Polovodičové driftované detektory
Přechod P-I-N Příměs (lithium) vytvoří oblast volných nábojů ~ 1 cm Křemíkové detektory P-I-N (ZSi=14, Eion=3,6 eV) Těžké nabité částice Elektrony s dostatečnou energií Pracují i při pokojové teplotě, při nízké teplotě (~77 K) nižší šum Germaniové detektory GeLi (ZSi=32 , Eion=2,8 eV) Spektroskopie  Výborné energetické rozlišení (~ 0,2 %) Krátká mrtvá doba Nutnost neustále udržovat za nízké teploty


Stáhnout ppt "Interakce ionizujícího záření s hmotou"

Podobné prezentace


Reklamy Google