Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Chalkogeny – prvky VI.A skupiny

Podobné prezentace


Prezentace na téma: "Chalkogeny – prvky VI.A skupiny"— Transkript prezentace:

1 Chalkogeny – prvky VI.A skupiny
charakteristika: nekovy: kyslík, síra, polokovy: selen, telur, kov: polonium p – prvky - valenční elektrony mají v orbitalech s a p a to celkem 6 val. elektronů elektronegativita jejich atomů roste od polonia ke kyslíku v přírodě čisté, ale i v minerálech nebo horninách jejich atomy reaktivní, do oktetu jim chybí pouze 2 elektrony, které získávají od atomu prvku se kterým vstupují do vazby

2 nejrozšířenější prvek na Zemi volný prvek O2, případně jako ozon O3
kyslík (8O) výskyt: nejrozšířenější prvek na Zemi volný prvek O2, případně jako ozon O3 O2 v zemské atmosféře tvoří 20,948 objemových procent slané, sladké vody fotosyntéza u zelených rostlinami začala asi před let obsah O2 v atmosféře dosáhl před let asi 2% současného stavu a před let asi 20% současného obsahu v atmosféře ve sloučeninách ( jako voda a jako složka většiny hornin, minerálů a půd ) biogenní prvek – v tělech rostlin a živočichů

3 laboratorní příprava:
katalytickým rozkladem peroxidu vodíku pomocí poplatinované niklové folie 2 H2O2 → O2 + 2H2O, Pt / Ni tepelným rozkladem některých solí kyslíkatých kyselin 2KClO3 → 2KCl + 3O2 reakce probíhá za teploty °C

4 nejlepší metodou pro získání velmi čistého kyslíku je však tepelný rozklad manganistanu draselného ve vakuu reakce probíhá při 215 až 235 °C 2KMnO4 → K2MnO4 + MnO2 + O2 průmyslová výroba: frakční destilací zkapalněného vzduchu při teplotách okolo -183 °C

5 fyzikální vlastnosti:
plyn bez barvy, zápachu a chuti, lehčí než vzduch tuhý a kapalný kyslík mají modrou barvu tvoří tři stabilní izotopy z nichž výrazně převládá 16O, který tvoří více než 99,73 hmotnostních %, ostatní, velmi vzácné izotopy jsou 17O a 18O dopravuje se podobně jako vodík v ocelových bombách, označených modrým pruhem, stlačený na 15 MPa existuje i atomární kyslík, vzniká elektrickým výbojem

6 kapalný kyslík

7 extrémně reaktivní plyn
chemické vlastnosti: extrémně reaktivní plyn přímo oxiduje mnoho prvků, buď při normální nebo při zvýšené teplotě oxidační čísla v izolovatelných sloučeninách mohou mít hodnoty +1/2, 0, -1/3, -1/2, -1 a -2

8 ozón nestálý namodralý plyn s ostrým zápachem, podle kterého byl poprvé zjištěn a podle kterého (z řeckého ozein = čichat, páchnout) jej pojmenoval v roce 1840 C. F. Schőnbein cítíme jej při koncentraci 0,003 ppm, při koncentraci vyšší než 0,15 ppm způsobuje dýchací obtíže při -111, 9°C kondenzuje na tmavomodrou kapalinu, při -192, 5°C černofialová pevná látka

9 připravuje se ze stlačeného a zchlazeného vzduchu nebo z kyslíku elektrickým výbojem
užívá se ke sterilizaci potravin a k desinfekci vody, k odstraňování pachů, k bělení papíru silné oxidační vlastnosti absorbuje UV záření - chrání povrch Země před intenzivním UV zářením Slunce

10 vznik ozónu:

11 atomární kyslík příprava - působením elektrického výboje na O2 za sníženého tlaku reaktivnější než O2

12 využití dikyslíku: autogenní sváření a řezání kovů dýchací přístroje a kyslíkové stany inhalace při otravách tavení železných a neželezných kovů v kapalném stavu pro pohon raket a kosmických lodí

13

14

15 sloučeniny: voda ve třech skupenstvích,v krystalech ledu a v kapalné vodě jsou molekuly vody vázány vodíkovými můstky, mezi molekulami vodní páry vodík. můstky nejsou obsažená v hydrátech solí (např. FeSO4·7 H2O, CuSO4·5H2O)

16 polární rozpouštědlo, rozpouští polární látky
bod varu vyšší, než odpovídá molární hmotnosti (způsobeno vodíkovými můstky mezi molekulami vody)

17 voda se podle přítomnosti minerálních látek dělí na:
a) měkkou – s minimálním obsahem rozpuštěných solí b) tvrdou rozlišujeme: a) dočasnou tvrdost, která je způsobena hydrogenuhličitanovými anionty, např. hydrogenuhličitanem vápenatým, který se ve vodě rozpouští a dá se odstranit varem, vznikne z něj nerozpustný uhličitan vápenatý – tzv. kotelní kámen 2(HCO3)- → (CO3)2- + H2O + CO2

18 trvalá tvrdost je způsobena sírany hořečnatými a vápenatými, které se ve vodě nerozpouští
dá se odstranit sodou (Na2CO3) nebo pomocí iontoměničů: Ca 2+ + Na2CO3 → CaCO3↓ + 2Na+

19 má větší hustotu a viskozitu než voda
peroxid vodíku poprvé připraven v roce 1818 J. L. Thenardem reakcí kyseliny sírové s peroxidem barnatým a odpařením nadbytečné vody za sníženého tlaku: BaO2 + H2SO4 → BaSO4↓ + H2O2(aq) průmyslově se vyrábí autooxidací 2-ethylantrachinolu (30%) bezbarvá kapalina méně těkavá než voda má větší hustotu a viskozitu než voda

20 peroxid vodíku – 3%, 12%, 30 %

21 rozkládá se: 2H2O2(l) → 2H2O(l) + O2(g) inhibitor: močovina, kys. fosforečná katalyzátor: oxid manganičitý, stříbro, platina využití: oxidační i redukční činidlo, dezinfekce

22 z chemického hlediska dělíme oxidy na několik podskupin:
s výjimkou vzácných plynů jsou známé oxidy všech prvků periodické tabulky vlastnosti oxidů se mění v širokém rozmezí - od nesnadno kondenzovatelných plynů, jako je např.: oxid uhelnatý (teplota varu -191,5 °C) až po netěkavé, těžkotavitelné oxidy, např.: oxid zirkoničitý (teplota varu 4850 °C) z chemického hlediska dělíme oxidy na několik podskupin:

23 kyselé: většinou oxidy nekovů (CO2, SO2, NO2), pokud jsou ve vodě rozpustné, tak s ní reagují za vzniku kyselin bazické: oxidy elektropozitivních prvků (Na2O, CaO) amfoterní: oxidy méně elektropozitivních prvků (BeO, ZnO, Al2O3) neutrální: oxidy, které nereagují s vodou ani s vodnými roztoky kyselin nebo hydroxidů (CO, N2O)

24 z hlediska vodivosti: výborné isolanty (např. MgO) polovodiče (např. NiO) dobré vodiče (např.ReO3)

25 síra (16S) historie: Síru znali již staří Řekové a Římané, od legendárního zničení Sodomy a Gomory sirným deštěm, až k nedávnému objevu, že síra spolu s kyselinou sírovou je hlavní složkou atmosféry planety Venuše. Egypťané znali síru již od 16. století před naším letopočtem a o použití hořící síry k desinfekci se lze dočíst i v Homérově Odysseji. V roce 1245 objevil Friar Bacon střelný prach, který se skládal z ledku, práškovitého dřevěného uhlí a síry. Poprvé byl použit v bitvě u Kresčaku. V roce 1746 zavedl John Roebuck výrobu kyseliny sírové v Anglii.

26 výskyt: čistá síra v sirných dolech (USA, Mexiko) sulfan v ropě, zemním plynu sulfidické minerály např.: pyrit, galenit, sfalerit, rumělka, sádrovec

27 krystaly kosočtverečné síry

28 nosiči síry - Indonésie

29 síra - Vesuv

30 průmyslová výroba: v první polovině 20. století – metodou vyvinutou H. Fraschem – vháněním přehřáté vodní páry do ložisek síry a vytlačováním zkapalněné síry horkým vzduchem na povrch ze zemního plynu, který obsahuje % sulfanu a z ropy

31 fyzikální vlastnosti:
síra má 4 stabilní izotopy 32S, 33S, 34S a 36S žlutá látka nerozpustná ve vodě dobře rozpustná např. v ethanolu dobrý tepelný a elektrický izolant vyskytuje se v několika formách:

32 kosočtverečná síra, která je stálá při laboratorní teplotě
jednoklonná síra, která vzniká z kosočtverečné síry při teplotě 95 C obě tyto formy mají v krystalech cyklické osmiatomové molekuly zahříváním jednoklonné síry nad 119°C připravíme tzv. kapalnou síru (hustá, viskózní kapalina), jejímž dalším zahříváním vznikají hnědé páry síry prudkým ochlazením těchto par vzniká sirný květ, který má podobu žlutého prášku při prudkém ochlazení kapalné síry dostaneme síru plastickou, která však není stálá a postupně přechází na modifikaci kosočtverečnou molekuly plastické síry vytvářejí dlouhé polymerní řetězce, které jsou také příčinnou její plastičnosti

33 chemické vlastnosti: síra hoří na vzduchu modrým plamenem za vzniku oxidu siřičitého a v malém množství i oxidu sírového reaguje s kyselinami, které mají oxidační vlastnosti: S + 2HNO3 → H2SO4 + 2NO reakcí s hydroxidy vzniká thiosíran a sulfid: 4S + 6KOH → K2S2O3 + 2K2S + 3H2O

34 využití: vulkanizace kaučuku výroba oxidu siřičitého výroba kyseliny sírové insekticidy, fungicidy, léčiva např. na kožní onemocnění

35 sloučeniny: sulfan bezbarvý, nepříjemně páchnoucí plyn, velmi jedovatý,v sopečných plynech, v minerálních vodách, při rozkladu bílkovin příprava - působením kyselin na sulfidy: FeS + 2HCl → FeCl2 + H2S

36 plynný H2S na vzduch hoří namodralým plamenem za vzniku oxidu siřičitého a vody: H2S + 3/2O2 → SO2 + H2O sulfan reaguje s vodou za vzniku kyseliny sulfanové dvojsytná kyselina, která existuje pouze ve vodném roztoku tvoří dva druhy solí: sulfidy a hydrogensulfidy

37 sulfidy alkalických kovů a kovů alkalických zemin jsou rozpustné ve vodě, sulfidy těžkých kovů jsou nerozpustné a většinou barevné oxidy 13 oxidů síry

38 oxid siřičitý vyrábí se spalováním síry nebo sulfanu: S + O2 → SO2 H2S + 3/2 O2 → SO2 + H2O vzniká při spalování uhlí obsahující síru (znečišťování ovzduší) bezbarvý jedovatý plyn, dusivého zápachu dobře rozpustný ve vodě, reakcí s vodou vzniká vodný roztok „kyseliny siřičité“ oxiduje se na oxid sírový: SO2 + 1/2O2 → SO3 (katalyzátor Pt nebo V2O5)

39 využití: výroba kyseliny sírové bělící činidlo – např. recyklovaného papíru (výroba novin ) dezinfekční činidlo (vinařství) konzervační činidlo v potravinářském průmyslu (výroba marmelád, sušeného ovoce, nealko nápojů)

40 oxid sírový připravuje se oxidací oxidu siřičitého: 2SO2 + O2 → 2SO3 ( katalyzátor Pt nebo V2O5 ) meziprodukt při výrobě kyseliny sírové s vodou reaguje za vzniku kyseliny sírové, s organickými látkami dochází k extrakci vody a k zuhelnatění organického materiálu

41 kyselina siřičitá příprava - zaváděním oxidu siřičitého do vody: SO2 + H2O → H2SO3 pouze jako vodný roztok silné redukční činidlo tvoří dvě řady solí: siřičitany a hydrogensiřičitany

42 kyselina sírová bezbarvá olejovitá kapalina, neomezeně se mísí s vodou, je oxidačním činidlem, má dehydratační účinky – odebírá látkám vodu, zuhelnaťuje organické látky má vysokou elektrickou vodivost – způsobenou autoprotolýzou: 2H2SO4 → (HSO4)- + (H3SO4)+

43 zředěná kyselina oxiduje a rozpouští neušlechtilé kovy za vývoje vodíku:
H2SO4 + Zn → ZnSO4 + H2 horká koncentrovaná kyselina oxiduje a rozpouští některé ušlechtilé kovy: Cu + 2H2SO4 → CuSO4 + SO2 + 2H2O zlato,platina,olovo účinkům konc. H2SO4 odolává

44 využití: výroba hnojiv elektrolyt do akumulátorů

45 tvoří dvě řady solí sírany hydrogensírany

46 výroba: kontaktní způsob S + O2 → SO2 2SO2 + O2 → 2SO3
spalování síry: S + O2 → SO2 směs oxidu siřičitého a vzduchu prochází přes oxid vanadičný – žlutočerná pevná látka, která je katalyzátorem, reakce probíhá za teploty cca 450 C: oxid vanadičný se vratně rozkládá na oxid vanidičitý a na kyslík, který reaguje s oxidem siřičitým: 2SO2 + O2 → 2SO3 oxid sírový je rozpouštěn v konc. kyselině sírové, vzniká oleum – hustá,dýmavá kapalina, která se ředí vodou na požadovanou koncentraci kyseliny sírové: SO3 + konc. H2SO4 → H2S2O7

47 kyselina sírová používaná do akumulátorů v automobilech

48 oxid vanadičný

49

50

51

52 likvidace úniku kyseliny sírové

53 sírany příprava rozpouštěním kovu ve vodném roztoku kyseliny: Fe + H2SO4 → FeSO4 + H2 reakcí kyseliny s oxidy nebo hydroxidy kovů: 2NaOH + H2SO4 → Na2SO4 + 2H2O ZnO + H2SO4 → ZnSO4 + H2O většina síranů je ve vodě dobře rozpustná, jsou to krystalické látky

54 kyselina peroxodisírová
bezbarvá pevná látka soli: peroxodisírany - oxidační a bělící činidla

55 kyselina thiosírová nestálá látka soli: thiosírany
silnější oxidační činidla oxidují thiosíran až na hydrogensíran: (S2O3)2- + 4Cl2 + 5H2O → 2(HSO4)- + 8HCl tato reakce se využívá při odstraňování přebytku chlóru z vlákna při průmyslovém bělení hydratovaný thiosíran sodný (Na2S2O3 · 10H2O) bílá krystalická látka snadno rozpustná ve vodě

56 kyselina peroxosírová (Carova)
silná jednosytná kyselina bezbarvá krystalická látka

57 selen (34 Se) výskyt: ve formě minerálů, tyto minerály se vyskytují v přírodě společně s minerály obsahujícími síru

58 fyzikální vlastnosti:
polokov,pevná krystalická látka,v různých formách, např. šedý, černý nebo červený selen, nerozpustný ve vodě 3 červené monoklinické polymorfní formy červený selen (alfa, beta, gama), z kruhů Se8 šedá „kovová“ - hexagonální krystalická forma červený amorfní - spirálové poněkud deformované řetězce sklovitý černý selen - nejdostupnější modifikace, má strukturu složenou z kruhů, které obsahují až tisíc atomů v jednom kruhu

59 v roce 1957 zjištěno, že selen má v organizmu lidí a zvířat esenciální význam pro tvorbu enzymu glutathionperoxidázy tento enzym katalyzuje reakce, ve kterých jsou likvidovány volné radikály různých látek v organismu volný radikál je atom nebo molekula látky, které obsahují jeden nebo více nespárovaných elektronů volné radikály látek působí destruktivně např. na membrány buněk v těle apod. nejvíce selenu obsahují mořské ryby a para ořechy

60

61 využití: výroba fotočlánků – ve fotočlánku jsou atomy selenu schopny uvolňovat elektrony po ozáření viditelným světlem, fotočlánek se tak stává zdrojem el. energie fotočlánky se využívají v solárních panelech, v kopírkách selen se také využívá pro výrobu světlocitlivého válce v laserových tiskárnách

62 Od roku 1998 obíhá na oběžné dráze ve výšce kolem 400 km mezinárodní vědecká stanice ISS.

63

64 elektrárna využívající solární panely (Bavorsko)

65 laserová tiskárna

66 polonium (84 Po) historie: výskyt:
Marie Curie-Sklodowská v roce 1898 izolovala dva prvky ze smolince, jeden prvek pojmenovala podle své vlasti polonium, druhý podle vlastnosti (radioaktivity) radium za tento objev získala v roce 1911 Nobelovu cenu za chemii výskyt: polonium se vzhledem ke svému krátkému poločasu rozpadu v přírodě téměř nevyskytuje v přírodě v uranových rudách se vyskytuje pouze izotop 210Po 210Po je těkavé, má krátký poločas rozpadu, takže uranové rudy jej obsahují pouze 0,1 mg v 1 t rudy

67 smolinec – obsahuje oxid uraničitý

68 průmyslová výroba: prakticky veškeré znalosti o fyzikálních a chemických vlastnostech tohoto prvku byly získány studiem izotopu 210Po, který se nejsnadněji připraví v jaderném reaktoru bombardováním 209Bi neutrony: 209Bi(n; γ) → 210Bi →(β) 210Po →(α) 206Pb

69 fyzikální vlastnosti:
kovový prvek tvoří stříbřité bílé krystaly větší elektrická vodivost než u telluru nemá žádný stabilní izotop

70 vzorek polonia

71 chemické vlastnosti: všechny sloučeniny polonia by měly být považovány za potencionálně toxické usazuje se v ledvinách, slezině a játrech a již v nepatrných koncentracích způsobují bolesti hlavy, nevolnosti, zvracení a podráždění sliznic; maximálně povolená dávka nejběžnějšího izotopu 210Po pro lidské tělo je g koncentrace sloučenin polonia ve vzduchu musí být nižší než 4· mg·m-3

72 využití: je to téměř čistý zářič α


Stáhnout ppt "Chalkogeny – prvky VI.A skupiny"

Podobné prezentace


Reklamy Google