Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
1
Kód materiálu: VY_32_INOVACE_11_TROJUHELNIKOVA_NEROVNOST Název materiálu: Trojúhelníková nerovnost Předmět: Matematika Ročník: 4. Časová dotace: 25 min. Datum ověření: Jméno autora: Mgr. Vladislav Rusín Klíčová slova: Trojúhelník, trojúhelníková nerovnost, pojmy větší, menší Výchovné a vzdělávací cíle: Žák se naučí sestrojit trojúhelník za předpokladu, že platí trojúhelníková nerovnost. Rozvíjené klíčové kompetence: Kompetence k učení a k řešení problémů Anotace, metodický list: Žáci se naučí sestrojit trojúhelník za předpokladu, že platí trojúhelníková nerovnost. Uvědomí si podstatu nerovnice. Použité zdroje: Tento výukový materiál byl vytvořen v rámci projektu EU peníze školám. Základní škola a Mateřská škola Veřovice, příspěvková organizace
2
Trojúhelníková nerovnost
Zpracoval: Mgr.Vladislav Rusín
3
Trojúhelníková nerovnost je důležitý vztah, který v trojúhelníku platí.
Můžeme říci, že součet délek dvou libovolných stran je vždy větší než délka třetí, zbývající strany. Zapíšeme: a + b > c a + c > b b + c > a
4
Co by se stalo, kdyby tato nerovnost neplatila?
Tj. pokud by platilo, že jedna strana je delší než součet zbývajících dvou? Nemohl by vzniknout trojúhelník, protože ty dvě strany budou příliš krátké a „nedosáhnou na sebe“.
5
Pokud by platila rovnost, tj
Pokud by platila rovnost, tj. dvě strany by byly v součtu stejně dlouhé jako třetí strana, pak by při pokusu narýsovat trojúhelník všechny body ležely na jedné přímce: Vrchol C leží na straně AB a celé tři body tak netvoří trojúhelník
6
Příklady: Rozhodni, zda můžeš narýsovat trojúhelník, jehož strany mají délky: a=4cm, b=8cm, c=6cm i=2cm, j=3cm, k=5cm r=4cm, s=7cm, t=2cm Trojúhelníky, které jdou sestrojit, narýsuj.
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.