Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
1
Poměr v základním tvaru.
Co je poměr. Poměr v základním tvaru.
2
Poměr Pojem poměr nás provází celým životem a setkáváme se s ním prakticky každodenně. Vzpomeňme jen na pár ukázkách některé případy, v nichž se v běžném životě s poměrem (pojmem poměr, vyjádřením poměru) setkáváme. Tak například poměr ředění sirupů, postřiků, čisticích prostředků, oleje apod. Obrázky:
3
Poměr Nebo skóre sportovních utkání – např. poměr nastřílených branek domácím a hostujícím týmem, poměr střel, vyloučení apod.
4
Poměr Případně měřítka map či plánů.
Obázek:
5
Počet využitých přesilovek.
Poměr Co to tedy je ten poměr? Je to způsob porovnání dvou údajů. Počet branek. Počet střel. 1 cm na mapě představuje cm ve skutečnosti. Vzdálenosti. Počet využitých přesilovek. Počet vyloučení.
6
Způsoby porovnávání údajů
Jak můžeme dva údaje porovnávat? 1. Pomocí rozdílu údajů na základě otázky „o kolik více“ nebo „o kolik méně“ … a - b Př.: Ve třídě je 24 dívek a 12 chlapců. O kolik více je ve třídě dívek než chlapců? Úlohu „o kolik více“ řešíme rozdílem. 24 – 12 = 12 Ve třídě je o 12 dívek více než chlapců. Př.: Ve třídě je 12 dívek a 24 chlapců. O kolik méně je ve třídě dívek než chlapců? Úlohu „o kolik méně“ řešíme také rozdílem. 24 – 12 = 12 Ve třídě je o 12 dívek méně než chlapců.
7
Způsoby porovnávání údajů
2. Pomocí podílu údajů na základě otázky „kolikrát více“ nebo „kolikrát méně“ … a : b Př.: Ve třídě je 24 dívek a 12 chlapců. Kolikrát více je ve třídě dívek než chlapců? Úlohu „kolikrát více“ řešíme podílem. 24 : 12 = 2 Ve třídě je dvakrát více dívek než chlapců. Př.: Ve třídě je 12 dívek a 24 chlapců. Kolikrát méně je ve třídě dívek než chlapců? Úlohu „kolikrát méně“ řešíme také podílem. 24 : 12 = 2 Ve třídě je dvakrát méně dívek než chlapců.
8
Definice poměru Vraťme se ještě jednou k předcházejícímu příkladu. Př.: Ve třídě je 24 dívek a 12 chlapců. Kolikrát více je ve třídě dívek než chlapců? Úlohu „kolikrát více“ řešíme podílem. 24 : 12 = 2 Ve třídě je dvakrát více dívek než chlapců. Říkáme, že počty dívek a chlapců jsou v poměru 24 : 12 Čteme dvacet čtyři ku dvanácti. Podílu a : b, kde a>0, b>0, říkáme poměr a čteme a ku b. Čísla a, b nazýváme členy poměru. Číslo a je první člen poměru, číslo b druhý člen poměru.
9
Zápis poměru Poměr (podíl) můžeme zapsat také ve tvaru zlomku. Konkrétně v našem předcházejícím příkladu můžeme výsledný poměr zapsat následovně: 2 1 Ze znalosti zlomků z toho pro nás plyne, že poměry můžeme stejně tak jako zlomky krátit a rozšiřovat. 24 : 12 = 2 : 1 Krácení poměru znamená dělení prvního i druhého členu poměru stejným číslem různým od nuly a jedné.
10
Krácení poměru Poměr lze krátit, pokud členy poměru jsou soudělná čísla. Krácení poměru znamená dělení prvního i druhého členu poměru stejným číslem různým od nuly a jedné. 5 9 40 : 8 = 5 72 : 8 = 9 Oba členy poměru můžeme dělit číslem 8, jinými slovy poměr krátit číslem 8. Po krácení je poměr vyjádřen nesoudělnými přirozenými čísly. Říkáme, že poměr je v základním tvaru. Poměr je v základním tvaru, pokud jsou oba členy poměru vyjádřeny nesoudělnými přirozenými čísly.
11
Rozšiřování poměru Abychom vyjádřili poměr v základním tvaru, tzn. pomocí nesoudělných přirozených čísel, potřebujeme často poměr rozšířit. Například, je-li poměr zadán desetinnými čísly nebo zlomky. Rozšiřování poměru znamená násobení prvního i druhého členu poměru stejným číslem různým od nuly a jedné. 1, = 15 3, = 35 V obou členech poměru se potřebujeme zbavit desetinné čárky, potřebujeme ji posunout o jedno místo doprava, tzn. vynásobit oba členy poměru deseti. 3 7 Po rozšíření je sice již poměr vyjádřen přirozenými čísly, ale zatím ještě ne nesoudělnými. Budeme jej tedy ještě krátit.
12
Rozšiřování poměru Abychom vyjádřili poměr v základním tvaru, tzn. pomocí nesoudělných přirozených čísel, potřebujeme často poměr rozšířit. Například, je-li poměr zadán desetinnými čísly nebo zlomky. Rozšiřování poměru znamená násobení prvního i druhého členu poměru stejným číslem různým od nuly a jedné. V obou členech poměru se potřebujeme zbavit tvaru zlomku, potřebujeme se zbavit jmenovatelů, tzn. vynásobit oba členy poměru nejmenším společným jmenovatelem (v našem případě číslem 12). 4 3 8 9 1 1 Po rozšíření je sice již poměr vyjádřen přirozenými čísly, ale zatím ještě ne nesoudělnými. Budeme jej tedy ještě krátit, v našem případě číslem 2.
13
Poměr 50:5 10:1 AB=50 mm CD=5 cm
Oba porovnávané údaje musí být ve stejných jednotkách. Př.: Vyjádři poměrem délky úseček AB=50 mm a CD=5 cm. Zadání svádí k rychlému zápisu řešení ve tvaru: 50:5 10:1 Je však tento výsledek správný? Narýsujme si obě zadané úsečky. Úsečky jsou stejně dlouhé, což znamená, že jejich délky jsou v poměru 1:1. A B Kde jsme tedy udělali chybu? AB=50 mm Nevyjádřili jsme si délky ve stejných jednotkách a porovnávali je v jednotkách různých. A to není možné! AB=50 mm=5 cm 5 CD=5 cm 5 C D : CD=5 cm 1 : 1 Dvě čísla (veličiny) můžeme porovnat poměrem jen tehdy, jsou-li uvedeny ve stejných jednotkách!
14
Pár příkladů k procvičení – list č. 1:
Vyjádřete v základním tvaru poměr první veličiny ke druhé: 960 km, 1320 km 10 kg, 45 kg 16 min, 36 min 1 km, 50 m 4 kg, 25 g 1,5 h, 50 min Až budete hotovi nebo když si nebudete vědět rady, klikněte, a ukážu vám postup.
15
Pár příkladů k procvičení – list č. 1:
Vyjádřete v základním tvaru poměr první veličiny ke druhé: 960 km, 1320 km 10 kg, 45 kg 16 min, 36 min 960 : 1320 10 : 45 16 : 36 96 : 132 2 : 9 4 : 9 24 : 33 8 : 11 1 km, 50 m 4 kg, 25 g 1,5 h, 50 min 1000 m, 50 m 4000 g, 25 g 90 min, 50 min 1000 : 50 4000 : 25 90 : 50 100 : 5 800 : 5 9 : 5 20 : 1 160 : 1
16
Pár příkladů k procvičení – list č. 2:
Najděte neznámý člen v rovnosti poměrů: 44 : x = 11 : 6 n : 40 = 9 : 10 y : 4 = 49 : 28 7 : 12 = 28 : z 44 : 8 = 33 : n Až budete hotovi nebo když si nebudete vědět rady, klikněte, a ukážu vám postup.
17
Pár příkladů k procvičení – list č. 2:
Najděte neznámý člen v rovnosti poměrů: 44 : x = 11 : 6 n : 40 = 9 : 10 y : 4 = 49 : 28 11 je zvětšena na 44. 10 je zvětšena na 40. 28 je zmenšena na 4. Kolikrát? 44 : 11 = 4 Kolikrát? 40 : 10 = 4 Kolikrát? 28 : 4 = 7 4 x zvětšíme i číslo 6. 4 x zvětšíme i číslo 9. 7 x zmenšíme i číslo 49. 44 : 24 = 11 : 6 36 : 40 = 9 : 10 7 : 4 = 49 : 28 7 : 12 = 28 : z 44 : 8 = 33 : n 7 je zvětšena na 28. 44 je změněna na 33. 5 je zvětšena na 40. Kolikrát? 28 : 7 = 4 Jak? Děleno 4, násobeno 3. Kolikrát? 40 : 5 = 8 4 x zvětšíme i číslo 12. Provedeme to i s číslem 8. 8 x zvětšíme i číslo 3. 7 : 12 = 28 : 48 44 : 8 = 33 : 6
18
Pár příkladů k procvičení – list č. 3:
Určete, které poměry se sobě rovnají: 2 : 3; 3 : 6; 3 : 7; 1,2 : 2,4; 1,5 : 3,5; 2,8 : 7; 6/4 :14/4; 4 : 10; 0,1 : 0,2; 4 : 5; 1 : 7/3; 8 : 18 Až budete hotovi nebo když si nebudete vědět rady, klikněte, a ukážu vám postup.
19
Pár příkladů k procvičení – list č. 3:
Určete, které poměry se sobě rovnají: 2 : 3; 3 : 6; 3 : 7; 1,2 : 2,4; 1,5 : 3,5; 2,8 : 7; 6/4 :14/4; 4 : 10; 0,1 : 0,2; 4 : 5; 1 : 7/3; 8 : 18 3 : 6 = 1,2 : 2,4 = = 0,1 : 0,2 2 : 3 3 : 6 = 1 : 2 Poměry, které se sobě rovnají, mají stejný základní tvar. Všechny zadané poměry tedy nejdříve vyjádříme v základním tvaru. 3 : 7 1,2 : 2,4 = 12 : 24 = 1 : 2 1,5 : 3,5 = 15 : 35 = 3 : 7 3 : 7 = 1,5 : 3,5 = = 6/4 : 14/4 = = 1 : 7/3 2,8 : 7 = 28 : 70 = 2 : 5 6/4 : 14/4 = 6 : 14 = 3 : 7 4 : 10 = 2 : 5 0,1 : 0,2 = 1 : 2 2,8 : 7 = 4 : 10 4 : 5 1 : 7/3 = 3 : 7 8 : 18 = 4 : 9
20
Pamatuj si! Poměr je v základním tvaru, pokud jsou oba členy poměru vyjádřeny nesoudělnými přirozenými čísly. Poměry se sobě rovnají, rovnají-li se jejich základní tvary. Poměry krátíme tak, že první i druhý člen poměru dělíme stejným číslem různým od nuly a jedné. Poměry rozšiřujeme tak, že první i druhý člen poměru násobíme stejným číslem různým od nuly a jedné.
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.