Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
ZveřejnilLauren Anthony
1
Telencephalon Vyvíjí se z rostrální části předního váčku. Za embryonálního vývoje má 3 části: t. medium (l. terminalis) t. laterale – párové, podkovovitě se zatáčející Laterální váčky prosencefala rostou mnohem rychleji než mediální část a dávají tak vznik mozkovým hemisférám. Mediální část prosencefala se změní v tenkou lamina terminalis, která tvoří přední stěnu III. mozkové komory. Uvnitř každé hemisféry je laterální komora (I. a II. mozková komora), které komunikují se III. mozkovou komorou skrze foramina interventricularia (Monroi). Původně hladký povrch hemisfér se postupně člení na pět základních laloků a zvrásňuje se za vytvoření závitů (gyrifikace), čímž se zvětšuje jejich plocha. Diferenciace telencefala na 1. pars pallialis (dorzálně, tenká – palium – MK 2. pars basilaris (silnější, uvnitř hemisfér – BG 3. pars septalis (2 části: s. pellucidum dorzálně a septum verum ventrálně – není kryta MK Růstem a myelinizací drah – bílá hmota vyplní prostory mezi kůrou a BG - komory jsou zatlačeny mediálně. Tenká med. stěna telenceph. váču se spojí 1) s th – lamina afixa 2) s cévami – tela choroidea v. lateralis spojení hemisfér napříč – commisura ant., corpus callosum, fornix. 1
4
Structure of telencephalon
Gray matter Cortex (pallium) Basal ganglia (striatum) White matter - pathways Projection Commissural Association Během vývoje nerostou jednotlivé části laterálních váčků stejnou rychlostí, zvětšují se hlavně kaudálním a bazálním směrem. Rychlejším růstem vzniká lobus frontalis (frontální lalok) a lobus temporalis (temporální lalok) otáčející se zpět orálním směrem. Osa, kolem které rotují rychleji rostoucí oblasti, probíhá laterální plochou hemisfér. V těchto místech růst hemisféry zaostává a následně vklesává za vytvoření fossa lateralis cerebri, na jejímž dně je lobus insularis. Z důvodu rychlejšího růstu ve frontálním a temporálním směru má řada struktur telencefala včetně laterálních komor podkovovitý tvar. 4
5
Cerebral cortex ALLOCORTEX 3-5 layers neocortex
a) palleocortex (rhinencephalon) b) archicortex (limbic system) MESOCORTEX = peripaleocortex, periarchicortex NEOCORTEX (ISOCORTEX) 6 layers palleocortex archicortex neocortex Na základě fylogenetického vývoje lze rozlišit paleocortex, archicortex et neocortex. Použití tohoto způsobu členění kortexu u člověka je vhodné pro pochopení a orientaci v často složitých strukturálních vztazích. V paleokortexu a archikortexu jsou neurony uspořádány do 3-5 vrstev, zatímco neokortex má 6 vrstev neuronů. Neurony v neokortexu jsou navíc organizovány do funkčních jednotek ve tvaru sloupců. Zjednodušeně si lze představit, že u ryb a obojživelníků je na telencefalu vyvinutý paleo- a archikortex. Neokortex se objevuje poprvé mezi paleo- a archikortexem u plazů. V průběhu fylogenetického vývoje dochází k největšímu rozvoji neokortexu u savců, včetně jeho vnitřní organizovanosti a ke zvětšení jeho povrchu projevujícího se gyrifikací. U člověka se stává neokortex kritickou strukturou jeho intelektuální aktivity. Paleo- a archikortex jsou na základě vnitřní strukturální stavby označovány jako allocortex (allokortex), zatímco neokortex jako isocortex (isokortex). Paleokortex se nachází u člověka na spodní ploše hemisfér, kde společně s bulbus olfactorius a souvisejícími strukturami (tractus olfactorius, trigonum olfactorium a stria olfactoria lateralis et medialis) je základem tzv. čichového mozku, rhinencefala (rhinencephalon). Archikortex je uložen na mediální ploše hemisfér ve formě kortikální pásky, která zde byla vytlačena rozvíjejícím se neokortexem, a je označována jako cornu Ammonis. Největší část povrchu hemisfér zaujímá neokortex, který s paleokortexem a archikortexem má ještě hraniční zóny, peripaleokortex et periarchikortex (společně označovaný jako mesokortex). Pars pallialis se vějířovitě rozrůstá. Od 4 m základy rýh a závitů - vkleslé místo lat – insula přes ni opercula. Vznik fossa a sulcus cerebri lat. 5
6
Limbic lobe Rhinencephalon Bulbus olfactorius Tractus olfactorius Tuberculum olf. Stria olf. med. et lat. Gyrus cinguli Gyrus parahippocampalis Indusium griseum
7
ARCHICORTEX Hippocampal complex: Hippocampus (cornu ammonis, CA) Gyrus dentatus Subiculum
9
Fornix
10
gyrus parahippocampalis
Limbic system – classic conception Papez‘s circuit (James Papez 1939) without specific function ncl. anterior thalami tr. mammilo-thalamicus gyrus cinguli ncl. mamillaris fornix gyrus parahippocampalis hippocampus
11
RECENT CONCEPTION OF LIMBIC FOREBRAIN
basomedial telencephalon, structures of diencephalon and mesencephalon for emotion and motivation of our behavior Regular structures g. cinguli, g. parahippocampalis, hippocampus, insular cortex, neocortical regions of forebrain - basal frontotemporal regions, orbital cortex area septalis, amygdalar ncll., ventral striatum (pallidum) přední část g. parahippocampalis – entorhinální kortex – příjem kognitivních a senzorických informací z asociačních kortikálních oblastí, přenáší tyto informace do hipp. pro konsolidaci a pak vrací zpět do asociačního kortexu, kde dochází ke kodování ve formě paměťových stop hippokampální formace – subiculum, vlatní hippocampus, gyrus dentatus, jednotlivé sektory se označují jako cornu ammonis fornix – přímé pokračování fimbria, která přijímají axony ze subicula a hippocampu, vedou do předního hypothalamu, ncl mammillaris bilat. poškození hippokampu – ztráta deklarativní paměti, procedurální je zachována ncl. anterior et medialis dorsalis thalami, habenulla hypothalamus (ncl. mammillaris)
12
Limbic system – classic conception
Papez‘s circuit (James Papez 1939)
13
Image of tooth pain Image of fear Reminiscence of music hearing
MDN- ncl. dorsomedialis
15
Brodman’s map (cytoarchitectonic map of cortex) ■ 11 regiones ■ 52 areae
I když základní stavba neokortexu je v podstatě všude stejná, existují významné lokální rozdíly v tloušťce kůry, tloušťce jednotlivých vrstev, v zastoupení buněčných typů v jednotlivých vrstvách, v uspořádání vláken v jednotlivých vrstvách, v množství vláken af a ef., v mediátorové a enzymové výbavě a ve funkčních vlastnostech neuronů. Také rozdíly v úpravě glie, cév, množství pigmentu aj. Podle jednotivých kritérií byly vypracovány mapy mozkové kůry, podle nichž může mít kůra ) cytoarchitektonické členění (podle typů bb a jejich frekvence). Nejčastěji se používá členění podle Brodmana na 11 krajin (regiones) a 52 menších polí (areae) 2) Myeloarchitektonické (respektuje úpravu svazků vláken), 3) glioarchitektonické (podle zasoupení typů a úpravy glie), 3) angioarchitektonické (podle úpravy korových cév) aj. Obr.: cytoarchitektonická mapa kůry podle Brodmana. Jednotlivé areae jsou označeny čísly 15
16
Functional regions of cortex
Funkční korové oblasti: místní morfologické obměny charakteru kůry jsou v těsném vztahu k funkcím příslušného okrsku kůry. Kůra je nejvyšší úrovní mozku, do které přicházejí informace, zpracování informací je na nejvyšší úrovni. Při mapování funkčně specializovaných okrsků kůry se obvykle rozlišují: 1) primární korové oblasti – též označované jako projekční oblasti motorické, sensitivní i smyslové s přesnou funkcí a přesným somatotopickým uspořádáním. 2) sekundární korové oblasti, které mají rozpoznávací a asociační funkce. Mají také somatotopické uspořádání, avšak méně detailní, vykonávají řadu funkcí kontrolních a primární oblasti jsou jim v tomto smyslu podřízení 3) asociační korové oblasti (fylogeneticky nejmladší oblasti). Mají zvýšené množství přívodů z jiných funkčních oblastí kůry i z podkorových struktur. Jejich funkce jsou rozsáhlé, závisí na nich také individuální vědomí osobnosti a jednání. Primary motor c. (a 4), primary somatic sensory c. (a 3,1,2), primary visual c. (a 17), primary auditory c. (a 41,42) Secondary and association areas 16
17
SOMATOSENZORY „HOMUNCULUS“
MOTOR „HOMUNCULUS“
18
CORTICAL AREAS FOR SPEECH - I
Broca‘s (motor) cortical area - g. front. inf. a44, 45 lesion - expressive aphasia – the lack of speech, but understanding is OK Wernicke‘s (sensory) cortical area - a 22,39,40 in dominant hemi- sphere lesion - receptive aphasia – the lack of understanding
19
CORTICAL AREAS FOR SPEECH - II
20
Functional regions of cortex
Funkční korové oblasti: místní morfologické obměny charakteru kůry jsou v těsném vztahu k funkcím příslušného okrsku kůry. Kůra je nejvyšší úrovní mozku, do které přicházejí informace, zpracování informací je na nejvyšší úrovni. Při mapování funkčně specializovaných okrsků kůry se obvykle rozlišují: 1) primární korové oblasti – též označované jako projekční oblasti motorické, sensitivní i smyslové s přesnou funkcí a přesným somatotopickým uspořádáním. 2) sekundární korové oblasti, které mají rozpoznávací a asociační funkce. Mají také somatotopické uspořádání, avšak méně detailní, vykonávají řadu funkcí kontrolních a primární oblasti jsou jim v tomto smyslu podřízení 3) asociační korové oblasti (fylogeneticky nejmladší oblasti). Mají zvýšené množství přívodů z jiných funkčních oblastí kůry i z podkorových struktur. Jejich funkce jsou rozsáhlé, závisí na nich také individuální vědomí osobnosti a jednání. Secondary and association areas 20
21
BASAL GANGLIA AND RELATED STRUCTURES
ncl. caudatus, putamen, globus pallidus (ext. + int. segment), claustrum and amygdalar ncll. Functionally: + thalamus, substantia nigra, ncl. subthalamicus, ventral tegmental area (VTA) globus pallidus + putamen = ncl. lentiformis
22
Basal ganglia 1 ncl. caudatus 2 globus pallidus 3 putamen 4 claustrum
5 6 1 ncl. caudatus 2 globus pallidus 3 putamen 4 claustrum ■ corp. amygdaloideum Functionally ncl. subthalamicus substantia nigra 22
23
Corpus amygdaloideum 1) behavior for preservation of self 2) learning
3) emotion processing
24
Development of BG Neostriatum (striatum) ncl. caudatus, putamen – dorsal striatum ncl. accumbens – ventral striatum Palleostriatum (pallidum) = globus pallidus lat. + med. segment – dorsal pallidum ventral pallidum Archistriatum corpus amygdaloideum BG se vyvíjejí souběžně s rozvojem kortexu. Ne zcela přesně se používá také označení striatum (v širším slova smyslu), Podobně jako kortex lze striatum z vývojového hlediska rozdělit na paleostriatum, archistriatum et neostriatum. Paleostriatum Globus pallidus (bledé jádro). V klinické praxi se často používá zkrácený termín pallidum. Je rozděleno na pars lat (také pars externa) a pars med (také pars interna). Strukturálně je pars medialis velmi podobná pars reticularis substantiae nigrae a nucleus subthalamicus, což svědčí o společném původu těchto struktur (vyvíjejí se z diencefala). Archistriatum soubor jader různé velikosti označovaný jako corpus amygdaloideum (amygdala, amygdalární jádra). Leží v temporálním laloku před cornu temporale lat komory a hippokampem, její pozici lze také identifikovat podle lokalizace pod uncus gyri parahippocampalis. Jádra jsou tvořena vývojově starší kortikomediální skupinou, vývojově mladší a u člověka výrazně vytvořenou bazolaterální skupinou a centrálním jádrem (nucleus centralis). Amygdalární jádra tvoří spoje se subkortikálními a kortikálními strukturami pro řízení funkcí, které primárně souvisejí s řízením emočních projevů chování např. při příjmu potravy, strachu a úzkosti, se sexuálním chováním. Jaderná skupina se rovněž podílí na řízení motorických, kardiovaskulárních a endokrinních mechanizmů, aktivita jader výrazně souvisí s pamětí a dalšími vyššími kognitivními funkcemi. Neostriatum Nucleus caudatus a putamen mají podobnou buněčnou strukturu. Obě struktury zůstávají spojené proužky šedé hmoty procházející přes capsula interna, což dalo tomuto souboru označení corpus striatum. 24
25
Ncl caudatus + putamen = dorsal striatum
VP VS C Pu GP Ncl caudatus + putamen = dorsal striatum Globus pallidus = dorsal pallidum Substantia innominata: VS = ventr. striatum (ncl. accumbens septi) VP = ventral pallidum Ncl. basalis Meynerti Hlavní složky BG jsou snadno makroskopicky rozlišitelné na horizontálních nebo frontálních řezech hemisférami telencefala. Na frontálním řezu mozkovou hemisférou v úrovni commissura anterior je mezi facies inferior frontálního laloku a globus pallidus a putamen rozptýlená šedá hmota označovaná jako ventrální pallidum (mediálně) a ventrální striatum (laterálně). Vlastní globus pallidus pak představuje dorzální pallidum a putamen společně s ncl. caudatus tvoří dorzální striatum. Claustrum je tenká vrstva šedé hmoty nejasného významu, která je uložena laterálně od putamen a amygdalárních jader v temporálním laloku jako součást olfaktorního a limbického systému. Přehled struktur řazených k bazálním gangliím se může v jednotlivých učebnicích odlišovat. Z hlediska anatomického členění telencefala patří k bazálním gangliím pallidum, striatum a skupina amygdalárních jader. Na základě spojů a funkčního výkladu jsou k bazálním gangliím řazeny ještě struktury diencefala (ncl. subthalamicus) a mesencefala (substantia nigra) (viz níže). ADHD=Attention Deficit Hyperactivity Disorders (co-existence of attentional problems and hyperactivity )
26
Functional connections of BG
CORTEX STRIATUM THALAMUS PALLIDUM Function of BG inhibition of cortical and subcortical motor functions 26
27
NCL. CAUDATUS obsessive compulsive disorder (OCD) attention deficit disorder (ADD) depression schizophrenia PAP syndrome Huntington's disease PUTAMEN Tourette's syndrome NCL. BASALIS Alzheimer’s disease SUBSTANTIA NIGRA Parkinson’s disease
28
White matter of the telencephalon - corpus medullare
Fibers commissural projection association centrum semiovale
29
1 corpus callosum neocortex
Commissural fibers 1 corpus callosum neocortex 2 commissura ant pars ant.- paleocortex pars post. - neocortex 3 commissura fornicis archicortex 1 2 3 Homo – spojují stejné okrsky levé a pravé hemisféry. Hetero – spojují různé okrsky levé a pravé hemisféry Komisurální dráhy jsou svazky axonů, které vzájemně propojují struktury levé a pravé hemisféry. Největší komisurou telencefala je corpus callosum na kterém můžeme rozlišit v rostro-dorzálním směru rostrum, genu, truncus et splenium corporis callosi. Axony corpus callosum jsou topograficky uspořádány, takže jejich svazek procházející přes rostrum a genu propojuje frontální laloky a tvoří menší oblouk otevřený rostrálním směrem (forceps frontalis). Vlákna propojující okcipitální laloky tvoří oblouk otevřený dozadu (forceps occipitalis) a jsou součástí splenium corporis callosi. Commissura anterior je svazek bílé hmoty cylindrického tvaru, který leží napříč před columnae fornicis a lamina terminalis (přední stěnou III. komory mozkové). Svazek je složen z fylogeneticky starší části pars anterior, která propojuje struktury čichové kůry a z mladší části pars posterior, která propojuje neokortikální struktury temporálního laloku. Commissura fornicis je ploténka bílé hmoty trojúhelníkovitého tvaru, která leží mezi rozestupujícími se crura fornicis. Vlákna této komisury propojují vzájemně gyrus parahippocampalis a další struktury hippokampální formace levé a pravé hemisféry. 29
30
Corpus callosum - 300 million fibers
forceps minor connection of frontal lobes forceps major connection of occipital lobes tapetum roof of the posterior horn
31
Commissura fornicis et anterior
32
Projection fibers short ■ connections between cortex and BG
■ reciprocal connections between cortex and thalamus long tr. co-sp tr. co-ncl tr. co-ret tr. co-tec tr. co-ru tr. co-bulb tr. co-po Projekční dráhy - svazky axonů, které tvoří vzájemné spojení mezi MK a níže uloženými strukturami. Krátké projekční dráhy zahrnují spoje mezi MK a BG nebo mezi kůrou a thalamem. Jako příklad lze uvést tractus th-corticales, tr co-thalamicus, tr co-striaticus nebo tr co-subth Dlouhé projekční dráhy jsou svazky obsažené v důležité struktuře bílé hmoty označované jako capsula interna. Capsula interna je bílá hmota mezi ncl caudatus, lentiformis a thalamem. V prostoru si lze capsula interna představit ve tvaru liliového květu, jehož otevřená část je obrácená laterálně k nucleus lentiformis a jehož stopka směřuje ke crus cerebri mezencefala. capsula interna
33
Capsula int.
35
CAPSULA INTERNA crus anterius –tr. thalamo-corticalis ant. and tr. fronto-pontinus genu - tr. cortico-nuclearis (from area 4 to contralateral motoneurons of cranial nerves) crus posterius - tr. cortico-spinalis (somatotopic arrangement), tr. cortico-reticularis and tr. cortico-rubralis, tr. thalamo-corticalis posterior (somatosenzory information to parietal cortex), tr. parieto-, temporo-, occipito-pontinus, radiatio optica, radiatio acustica
37
crus ant. genu radiatio acustica crus post. radiatio optica fr-po
co-ncl genu co-sp, ru,re Na horizontálním řezu hemisférou telencefala má capsula interna typický tvar písmene V, takže můžeme rozlišit crus anterius, genu et crus posterius capsulae internae. Jsou uvedeny jen dlouhé dráhy ! Crus anterius je uloženo mezi ncl caudatus a lentiformis. Obsahuje vlákna předního tr. th- co (spojení ncl. anterior thalami s frontální kůrou) a tr. fronto-po, částí tr. corticopontini. V genu probíhají tr co-nucl, které spojují motorickou kůru (area 4) s kontralaterálně uloženými motorickými neurony kraniálních nervů. Crus post. tvoří bílou hmotu mezi thalamem a nucleus lentiformis. Obsahuje vlákna v pořadí od genu - tr co-sp v somatotopickém uspořádání od kraniální části trupu a horních končetin ke kaudálním částem trupu a dolním končetinám. Paralelně s předcházející drahou probíhají tr co-re et co-ru. Následují tr co-th, zadní tr th-co (převádí SS informace do parietální kůry) a tr parieto- , temporo- et occipito-pontinus, což jsou součástí tractus corticopontini (spojení kortikálních neuronů telencefala s nuclei pontis). Radiatio optica je tvořena axony zrakové dráhy pocházející z corpus geniculatum laterale a směřující mediálně do primární zrakové kůry na mediální ploše okcipitálního laloku. Radiatio acustica obsahuje vlákna neuronů v corpus geniculatum mediale, která se vějířovitě zatáčí laterální směrem a končí v primární sluchové korové oblasti nacházející se na horní ploše gyrus temporalis superior (Heschlův závit). p,o,t -po crus post. radiatio acustica radiatio optica 37
38
Association fibers: short (fibrae arcuatae), long (fasciculus longitudinalis sup. et inf., fasciculus occipitofrontalis sup., fasciculi occipitales verticales, fasciculus uncinatus, cingulum) fibrae arcuatae cingulum f. longit. sup. propojují různě vzdálené korové oblasti hemisféry. Funkčně se jedná o důležité spoje, které umožňují součinnost rozdílných okrsků kůry často za vzniku funkce vyššího řádu. Krátké asociační dráhy probíhají těsně pod kortexem a vzájemně propojují kortikální oblasti jednoho závitu nebo kortex sousedních závitů (např. spoje mezi primární a sekundární senzorickou kůrou). Vzhledem k obloukovitému průběhu jsou označovány také jako fibrae arcuatae. Dlouhé asociační dráhy propojují vzdálenější místa kůry lokalizovaná v různých lalocích telencefala. Tvoří kompaktní svazky, které lze na fixovaném mozku dokonce vypreparovat. Fasciculus longitudinalis superior probíhá v hloubce bílé hmoty a spojuje kůru frontálního, parietálního, temporálního a okcipitálního laloku. Fasciculus longitudinalis inferior je uložen v blízkosti facies inferior hemisféry a propojuje kůru temporálního a okcipitálního laloku. Fasciculus occipitofrontalis superior se nachází v blízkosti corpus callosum a propojuje kůru frontálního laloku s kůrou parietálního a okcipitálního laloku. Fasciculus occipitofrontalis inferior leží pod předchozím svazkem a propojuje kortex frontálního laloku s kortexem insuly a temporálního a okcipitálního laloku. Fasciculus uncinatus spojuje obloukovitě kůru spodní (orbitální) plochu frontálního laloku s kůrou temporálního laloku. Fasciculi occipitales verticales jsou svazky vláken, které spojují kortex okcipitálního laloku a s kůrou parietálního laloku. Jako cingulum je označen výrazný svazek nacházející se v gyrus cinguli. Spojuje kůru frontálního, parietálního a temporálního laloku s gyrus hippocampi v rámci spojů tzv. limbického předního mozku. f. uncinatus f. longit. inf.
39
Illustrations were copied from:
Atlas der Anatomie des Menschen/ Sobotta. Putz,R., und Pabst,R. 20. Auflage. München: Urban & Schwarzenberg, 1993 Netter: Interactive Atlas of Human Anatomy. Windows Version 2.0
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.