Neeuklidovská geometrie

Slides:



Advertisements
Podobné prezentace
SPECIÁLNÍ TEORIE RELATIVITY
Advertisements

Relativistická dynamika
Lihovar Vizovice La distillerie de Visovice Visovice’s distillery
Co to je STR? STR je fyzikální teorie publikovaná r Albertem Einsteinem Nahrazuje Newtonovy představy o prostoru a čase Nazývá se speciální, protože.
Výukový materiál zpracován v rámci projektu EU peníze školám Registra č ní č íslo projektu: CZ.1.07/1.5.00/ Š ablona III/2VY_32_INOVACE_676.
Alena Cahová Relativistická dynamika. Skládání rychlostí Principu stálé rychlosti světla odporuje klasický vztah u´= u + v Předpokládejme, že raketa letí.
Speciální teorie relativity (STR)
10. LORENTZOVA TRANSFORMACE
Základy mechaniky tekutin a turbulence
Alena Cahová Důsledky základních postulátů STR. Teorie relativity je sada dvou fyzikálních teorií vytvořených Albertem Einsteinem:  speciální teorie.
Vztah mezi energií a hmotností. Klasická dynamika říká:  mezi energií tělesa E a jeho setrvačnou hmotností m 0 není žádný obecně platný vztah  těleso.
Les fautes des Tchèques en français Název školy Gymnázium Zlín - Lesní čtvrť Číslo projektu CZ.1.07/1.5.00/ Název projektu Rozvoj.
Od Newtonova vědra k GPS Aleš Trojánek Gymnázium Velké Meziříčí
Škola Střední průmyslová škola Zlín
Teorie relativity VŠCHT Praha, FCHT, Ústav skla a keramiky Motivace: Elektrony jsou již u relativně malých energií relativistické (10 keV). U primárních.
Expressions familières Název školy Gymnázium Zlín - Lesní čtvrť Číslo projektu CZ.1.07/1.5.00/ Název projektu Rozvoj žákovských.
Agence française pour la promotion de l’enseignement supérieur, l’accueil et la mobilité internationale Campus France Studovat ve Francii.
Tíhová síla a těžiště ZŠ Velké Březno.
Ester Maternová. L´article définiLELALES L´article indéfiniUNUNEDES L´article contractéDUDE LADES AUA LAAUX.
Osobnosti dějin matematiky
9. VZTAH MEZI ENERGIÍ A HMOTNOSTÍ
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
PAVEL DOSTÁL DOMINIK MACÁŠ
Fj_4_188_comparer Marta Bříštělová. AdjectifBON, BONNE La cuisine de ma maman est ……………. Mes filles ne sont pas très ……………………. cuisinières. Ton copin.
Enigmes Název školy Gymnázium Zlín - Lesní čtvrť Číslo projektu CZ.1.07/1.5.00/ Název projektu Rozvoj žákovských kompetencí pro.
Problémy klasické fyziky vedoucí ke vzniku speciální teorie relativity
Réalisation: Lenka Manová
AnotaceMateriál tvoří prezentace. Procvičování přívlastňovacích zájmen v jednotném a množném čísle v hovorových tématech. AutorMgr. Olga Medunová JazykFrancouzština.
Mechanika IV Mgr. Antonín Procházka.
E = m c 2 Aneb životopis jedné rovnice Karel Veselský Dalibor Skoupil.
Images superbes et très émouvantes..., un gamin qui sait parler aux marmottes! Krásné a velmi dojemné obrázky …, kluk, který ví, jak mluvit se svišti!
Obchodní akademie, Střední odborná škola a Jazyková škola s právem státní jazykové zkoušky, Hradec Králové Autor:Mgr. Martina Slánská Kalhousová Název.
SPŠ stavební a Obchodní akademie, Kladno, Cyrila Boudy 2954 EU peníze školám CZ.1.07/1.5.00/ Les symboles de la France Autor: Mgr. Anna Sekeráková.
ŠKOLA: Gymnázium, Chomutov, Mostecká 3000, příspěvková organizace AUTOR:Anzhela Sabadosh NÁZEV: VY_32_INOVACE_07B_01_ le corps humain TEMA:Civilisation.
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
Alimentation en France et en République tchèque Le dîner – les cafés – produits laitiers.
PETIT DÉJEUNER RESTAURANT FRUITS ET LÉGUMES. SNÍDANĚ RESTAURACE OVOCE A ZELENINA.
1 Národní evropské charakteristiky - Entropa – konverzace, diskuze Číslo projektu CZ.1.07/1.5.00/ Kódování materiáluVY_32_INOVACE_mix2_scj01 Označení.
Comment les jeunes passent-ils leur temps libre en République Tchèque?/Jak tráví volný čas mládež v České republice? Rédactrices/Vytvořily: Cécile Saffroy,
Obchodní akademie, Střední odborná škola a Jazyková škola s právem státní jazykové zkoušky, Hradec Králové Autor:Mgr. Martina Slánská Kalhousová Název.
ŠKOLA: Gymnázium, Chomutov, Mostecká 3000, příspěvková organizace AUTOR:Mgr. Anzhela Sabadosh NÁZEV:VY_32_INOVACE_07B_05_Suisse TEMA:Civilisation ČÍSLO.
Projet Nancy-Brno Alimentation, restauration, hôtellerie Jak se jí ve Francii, jak se jí u nás.
P ROJET COMMUN SUR L ’ ALIMENTATION EN R ÉPUBLIQUE T CHÈQUE ET EN F RANCE ( – )
PRÉSENTATION: Le petit déjeuner, les fruits et légumes, la recette et les restaurants Thibault, Michal, Stáňa, Elise, Dáša, Coline, Marion, Lucie.
SPŠ stavební a Obchodní akademie, Kladno, Cyrila Boudy 2954 EU peníze školám CZ.1.07/1.5.00/ Je me lève à 6 heures Autor: Mgr. Anna Sekeráková.
Alfons Mucha Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Tematická oblastFrankofonie Datum vytvoření Ročník3., 4. ročník.
SPŠ stavební a Obchodní akademie, Kladno, Cyrila Boudy 2954 EU peníze školám CZ.1.07/1.5.00/ Je tiens le dialogue Autor: Mgr. Anna Sekeráková.
Fyzika II, , přednáška 11 FYZIKA II OBSAH 1 INERCIÁLNÍ A NEINERCIÁLNÍ SYSTÉMY 2 RELATIVISTICKÉ DYNAMICKÉ VELIČINY V INERCIÁLNÍCH SYSTÉMECH 3 ELEKTROMAGNETICKÉ.
Les musées à Paris Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Tematická oblast Život ve Francii Datum vytvoření Ročník3.,
Elektronické učební materiály – II. stupeň Fyzika 8 Autor: Mgr. Zuzana Vimrová 1. V čem se liší? Eva o hmotnosti 54 kg vyšplhala do výšky 4 metrů za 6.
Milan Kundera Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Tematická oblastFrankofonie Datum vytvoření Ročník3., 4. ročník.
Prépositions – pays et villes Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Tematická oblastSlovní zásoba Datum vytvoření
Stuktura prostoročasu pro třetí věk
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
STR Mgr. Kamil Kučera.
Réseau des Alliances françaises en République tchèque
Princip konstantní rychlosti světla
Problémy klasické fyziky vedoucí ke vzniku speciální teorie relativity
Relativistická dynamika
La galette des rois Tematická oblast Život ve Francii Datum vytvoření
Speciální teorie relativity
02 – Fluidní mechanika Petr Zbořil
Výchova přirozeného zdravi
Jak jsou definovány základní fyzikální veličiny
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
Hydrostatika Tlak ideální kapalina je nestlačitelná r = konst
Špeciálna teória relativity = „teória invariantov“
Mechanika IV Mgr. Antonín Procházka.
Galileova transformace
MACH, GÖDEL a ROTUJÍCÍ VESMÍR
Transkript prezentace:

Neeuklidovská geometrie Co je konvenční a co faktické ve fyzikálních zákonech

Co je to absolutní Newtonův čas _ HODINY = zařízení, které koná periodický děj PERIODICKÝ DĚJ = opakuje se po stejném čase Po stejném čase = měříme hodinami ? 1s = doba zemské rotace /24.60.60 Představuje rotující Země správné hodiny?

Marc Chagall Time is a river Heart beat of a lover: non-standard clock Standard clocks: Uniform motion Vibrations of a string Pendulum

Co říká princip konstantní rychlosti světelné Světlo se šíří ve všech systémech inerciálních systémech rychlostí c Jak rychlost světla měříme? Pomocí hodin synchronizovaných světelným signálem. ť = t+L/c t L V kažém inerciálním systému existuje synchronizace, při které se světlo šíří ve všech směrech rychlostí c

Euclides podle Rafaela

(Hodně) stručná historie neeuklidovské geometrie 1832 J. Bolyai 1829 N. I. Lobačevskij Karl Friedrich Gauss 1821 měřil pomocí heliotropu trojúhelník Inselsberg - Brocken – Hoher Hagen Georg Friedrich Bernhard Riemann 1854 Über die Hypothesen welche der Geometrie zu Grunde liegen Albert Einstein, Marcel Grossman 1915 Obecná teorie relativity

- Tractrix – rotační těleso má povrch s konstntní zápornou křivostí

Poincaré: To je zajímavé, Alberte, proč? H. Poincaré (1854 – 1912), La Science et l’Hypothèse 1902 Einstein: Víš Henri, já začal se studiem matematiky, ale opustil jsem ji kvůli fyzice. Poincaré: To je zajímavé, Alberte, proč? Einstein: Protože v matematice jsem sice uměl odlišit správná a chybná tvrzení, neuměl jsem však říct, která fakta jsou důležitá. Poincaré: To je Albert velmi zajímavé, protože já jsem původně studoval fyziku, ale přešel jsem k matematice. Einstein: Opravdu, a proč? Poincaré: Protože jsem neuměl rozpoznat, která důležitá fakta jsou pravdivá.  David Singmaster: Apokryfický rozhovor Alberta Einsteina s Henri Poincarém

Poincaré a řezník (1854-1912)  (v.grad)v = -grad (p/ρ) + η Δv Navierovy-Stokesovy rovnice pro stacionární proudění  v rychlost proudění p tlak η kinematická viskosita ρ hustota v = v0 . υ R= v0 . x0/ η Reynoldsovo číslo x = x0 . ξ  (υ.gradξ) υ = -grad ( p/ρ) + 1/R . Δξ υ  Zákon geometrické podobnosti (O. Reynolds 1883) mp/ me,  = 2e2/hc, mp/mpl

POUR­QUOY LES LIEUES SONT TANT PETITES EN FRANCE. Why are the miles so short in France ...le roy Pharamond les distingua, ce que feut faict en la maniere qui s'en suyt. Car il print dedans Paris cent beaulx jeunes et gallans compaignons bien deliberez et cent belles garses picardes, et les feist bien traicter et bien panser par huyt jours, puis les appella, et a chascun bailla sa garse avecques force argent pour les despens, leur faisant commandement qu'ilz allassent en divers lieux par cy et par la, et, a tous les passages qu'ilz biscoteroyent leurs garses, que ilz missent une pierre, et ce seroit une lieue. Ainsi les compaignons joyeusement partirent, et, pour ce qu'ilz estoient frays et de sejour, ilz fanfreluchoient a chasque bout de champ. Et voyla pourquoy les lieues de France sont tant petites. Mais, quand ilz eurent long chemin parfaict et estoient ,a las comme pauvres diables, et n'y avoit plus d'olif en ly caleil, ilz ne beli­noient si souvent et se contentoyent bien, j'en­tends quand aux hommes, de quelque meschante et paillarde foys le jour. Et voyla qui faict les lieues de Bretaigne, des Lanes, d'Allemaigne, et aultres pays plus esloignez, si grandes. F. Rabelais, Gargantua et Pantagruel – for H. Poincaré

Rovnost tíhové a setrvačné hmotnosti p 0.938 GeV e 0.0005 GeV n 0.940 Gev