Úvod do klasických a moderních metod šifrování

Slides:



Advertisements
Podobné prezentace
Odtud vznikl název kalkulačka.
Advertisements

Kryptografie Šifrování
Ing. Roman Danel, Ph.D. Institut ekonomiky a systémů řízení Hornicko – geologická fakulta.
Úvod do klasických a moderních metod šifrování Jaro 2008, 7. přednáška.
Asymetrická kryptografie
Ukázky aplikací matematiky
A5M33IZS – Informační a znalostní systémy Datová analýza I.
Základy informatiky přednášky Kódování.
Architektury a techniky DS Tvorba efektivních příkazů I Přednáška č. 3 RNDr. David Žák, Ph.D. Fakulta elektrotechniky a informatiky
Tomáš Kuča Prezentace pro paní Cahelovou
Kombinatorické algoritmy
XII/2007 Gepro, spol. s r.o. Ing. Stanislav Tomeš Struktura výkresu - titulní strana Struktura výkresu WKOKEŠ.
Radek Horáček IZI425 – Teorie kódování a šifrování
Šifrovaná elektronická pošta Petr Hruška
Šifrování Jan Fejtek – Gymnázium, Dukelská 1, Bruntál
Ing. Roman Danel, Ph.D. Institut ekonomiky a systémů řízení Hornicko – geologická fakulta.
Historie počítačů.
Úvod do klasických a moderních metod šifrování
Úvod do klasických a moderních metod šifrování
Úvod do kryptologie Historie a klasické šifry
Predikátová logika.
Fakulta životního prostředí Katedra informatiky a geoinformatiky
Kryptografie – bojový prostředek ve 2. světové válce (ENIGMA)
Teorie čísel a kryptografie
Historie kryptografie
Rozpoznávání v řetězcích
Automaty a gramatiky.
Teorie čísel a kryptografie
Suezská krize Jan Wolf, Ov/Vv, IV. r..
Kanonické indexování vrcholů molekulového grafu Molekulový graf: G = (V, E, L, ,  ) Indexování vrcholů molekulového grafu G: bijekce  : V  I I je indexová.
Hillova šifra Lester S. Hill (1929) Polygrafická šifra Φ: Amx K  Bm
Teorie čísel a šifrování Jan Hlava, Gymnázium Jiřího Ortena Kutná Hora Petr Šebek, Gymnázium Uherské Hradiště.
Úvod do klasických a moderních metod šifrování
le chiffre indéchiffrable
Úvod do klasických a moderních metod šifrování Jaro 2009, 5. přednáška.
VY_32_INOVACE_22-01 Posloupnosti.
Úvod do klasických a moderních metod šifrování
RSA šifra Ronald Rivest, Adi Shamir a Leonard Adlemann.
Teorie čísel Prvočíslo Eulerova funkce φ(n)
Úvod do systému rostlin
Úvod do klasických a moderních metod šifrování
Podprogramy (subroutines) Pojmenované kousky programu, které –tvoří logicky ucelené části –se v programu opakují Jsou zapsány na jednom místě a v případě.
Feistlovy kryptosystémy Posuvné registry Lucifer DES, AES Horst Feistel Německo, USA IBM.
1. 2 Zabezpečená mobilní komunikace 3 Private Circle chrání Vaši komunikaci před odposlechem či narušením. Jedná se o komplexní řešení pro zabezpečení.
Hillova šifra Lester S. Hill (1929) Polygrafická šifra Φ: Amx K  Bm
McEllisova šifra.
McEllisova šifra. James Ellis( ) Clifford Cocks, Malcolm Williamson Alice Bob zpráva šum Odstranění šumu.
Bezpečnost systémů 2. RSA šifra *1977 Ronald Rivest *1947 Adi Shamir *1952 Leonard Adelman *1945 University of Southern California, Los Angeles Protokol.
Úvod do klasických a moderních metod šifrování
Kódování a šifrování Monoalfabetické šifry Polyalfabetické šifry
Informatika. Cíle výuky informatiky Studenti se mají seznámit se základními pojmy, problémy, postupy, výsledky a aplikacemi informatiky tak, aby je dokázali.
Šifrování – historické zajímavosti
Úvod do databází zkrácená verze.
Informační bezpečnost VY_32_INOVACE _BEZP_16. SYMETRICKÉ ŠIFRY  Používající stejný šifrovací klíč jak pro zašifrování, tak pro dešifrování.  Výhoda.
BEZPEČNOSTNÍ TECHNOLOGIE I Operační program Vzdělávání pro konkurenceschopnost Projekt: Vzdělávání pro bezpečnostní systém státu (reg. č.: CZ.1.01/2.2.00/ )
Složitost algoritmu Vybrané problémy: Při analýze složitosti jednotlivých algoritmů často narazíme na problém, jakým způsobem vzít v úvahu velikost vstupu.
Úvod do databázových systémů
Zabezpečení informace
Operační program Vzdělávání pro konkurenceschopnost
CHARAKTERISTIKA INTERNETU
Co se dá změřit v psychologii a pedagogice?
Klasické šifry – princip substituce, transpozice
MATEMATIKA – ARITMETIKA 6
Feistlovy kryptosystémy
Úvod do klasických a moderních metod šifrování
Zabezpečení informace
Úvod do klasických a moderních metod šifrování
Název projektu: Moderní výuka s využitím ICT
Ukázky aplikací matematiky
Algoritmizace a datové struktury (14ASD)
Transkript prezentace:

Úvod do klasických a moderních metod šifrování Jaro 2008, 1. přednáška

Oskar (Eva) - protivník Šifrování Cílem je skrýt obsah komunikace před protivníkem, který může komunikaci odposlouchávat. Oskar (Eva) - protivník y x Šifrovací algoritmus Dešifrovací algoritmus x Alice Bob K Bezpečný kanál Zdroj klíčů x – otevřený text y – šifrový text K - klíč

Šifrováním se snažíme skrýt obsah komunikace, neskrýváme komunikaci samotnou. Kryptologie – nauka o tom, jak skrývat obsah komunikace Steganografie – nauka o tom, jak skrývat komunikaci

kryptologie kryptografie kryptoanalýza zabývá se odhalováním slabin v šifrovacích systémech zabývá se návrhem šifrovacích systémů

Definice Šifrovací systém je uspořádaná pětice (P ,C ,K ,E ,D), kde a) P je konečná množina otevřených textů, b) C je konečná množina šifrových textů, c) K je konečná množina klíčů, d) E = {eK : K prvkem K}, kde eK : P → C je šifrovací funkce (algoritmus) pro každý prvek K množiny klíčů K , e) D = {dK : K prvkem K}, kde dK : C → P je dešifrovací funkce (algoritmus) pro každý prvek K množiny K , pro které platí dK(eK(x)) = x pro každý otevřený text x z množiny P a každý klíč K z množiny K .

Kryptografická pravidla (maxims) shrnují zkušenosti několika tisíciletí Při posuzování bezpečnosti kryptografického systému je nutné předpokládat, že protivník zná šifrovací systém (algoritmus), Auguste Kerckhoffs. Bezpečnost šifrovacího systému může, pokud vůbec někdo, posoudit pouze kryptoanalytik, Auguste Kerckhoffs. Šifrovací algoritmus by měl být „průhledný“, aby umožnil posouzení bezpečnosti. Umělé komplikace systému nemusí zvyšovat bezpečnost, naopäk mohou poskytovat kryptografovi iluzorní pocit větší bezpečnosti, Marcel Givierge. Nikdy nepodceňujte protivníka, nikdy nepřeceňujte své schopnosti. Při posuzování bezpečnosti šifrovacího systému je nutné brát v úvahu možná porušení pravidel ze strany uživatelů systému, Hans Rohrbach.

Možná porušení pravidel Odvysílání otevřeného i odpovídajícího šifrového textu, odvysílání dvou šifrových textů vzniklých šifrováním stejného otevřeného textu pomocí dvou různých klíčů, odvysílání dvou šifrových textů vzniklých šifrováním dvou různých otevřených textů pomocí stejného klíče, používání stereotypních začátků zpráv nebo běžných slov či frází, např. ANX, divizija, používání krátkých klíčů nebo klíčů, které lze snadno uhádnout, zanedbání přípravy otevřeného textu před šifrováním, nedostatečná kontrola šifrantů. Chyba kryptografa je často jedinou nadějí kryptoanalytika.

Nástup počítačů Zlomem v historii kryptologie byla druhá světová válka. Klasická kryptologie končí s koncem této války. V praktické oblasti to byla rozluštění německého vojenského šifrovacího systému Enigma polskými matematiky počátkem roku 1933 a později stavba prvního počítače v britském kryptonalytickém centru v Bletchley Park během války. V teoretické oblasti to byly práce amerického matematika Clauda Shannona: Communication theory of Secrecy systems, Sept. 1, 1946 A mathematical theory of communication, The Bell System Technical Journal, Vol. 27, pp. 379-423, 623-656, July, October, 1948.

Příklady klasických šifer Návrhy vycházely ze dvou základních konstrukčních principů: - konfůze (confussion) – mění význam písmen, substituční šifry Příklady: Ceasarova šifra, jednoduchá záměna, Vigenérova šifra, polyalfabetická šifra. difůze (diffusion) – mění polohu písmen, transpoziční šifry Příklady: jednoduchá transpozice, dvojitá transpozice.

Substituční šifry Ceasarova šifra – nahrazuje každé písmeno otevřeného textu písmenem, které je v abecedě o tři písmena dále Příklad: veni vidi vici yhql ylgl ylfl Slabina: kdo zná šifru, umí přečíst šifrový text, neboť šifra nezávisí na tajném klíči. Tabulka pro šifrování a dešifrování: a b c d e f g h i j k l m n o p q r s t u v w x y z d e f g h i j k l m n o p q r s t u v w x y z a b c

Posuvná šifra: zaměňuje každé písmeno otevřeného textu písmenem, které je v abecedě o k míst dále. Číslo k, které může nabývat hodnot 0,1,2,….,25, je klíč. Substituční tabulka pro klíč k = 7: a b c d e f g h i j k l m n o p q r s t u v w x y z h i j k l m n o p q r s t u v w x y z a b c d e f g Nevýhoda: příliš málo (malý prostor) klíčů, lze je všechny vyzkoušet. cvidw vgvio zkjmo vn dwjex whwjp alknp wo exkfy xixkq bmloq xp fylgz yjylr cnmpr yq gzmha zkzms donqs zr hanib alant eport as Řešení hrubou silou (exhaustive search)

Jednoduchá substituce Nahrazuje každé písmeno otevřeného textu nějakým jiným písmenem abecedy Klíčem je substituční tabulka, ve které je pod každým písmenem abecedy ve spodním řádku písmeno, které jej v šifrovém textu nahrazuje: a b c d e f g h i j k l m n o p q r s t u v w x y z e l q d x b p k y r w v a m o i u s z c f h n t j g Spodní řádek tabulky je vlastně nějakou permutací písmen abecedy Prostor klíčů je dostatečně velký – 26! – nelze řešit hrubou silou. Slabina: zachovává statistické vlastnosti otevřeného textu.

Metoda řešení je popsána již v arabském textu z 9. století. Obětí používání této šifry se stala např. Marie Stuartovna o mnoho století později. Jednoduchou záměnu používala také Rudá armáda při invazi do Polska v roce 1918. V depeších se často objevoval polygram axbxcxd, který odpovídal slovu divizija. V ruštině se ja píše jedním písmenem. Základní pomůckou pro řešení jednoduché záměny jsou frekvenční tabulky písmen (monogramů), sousedních dvojic písmen (bigramů), trojic písmen (trigramů), častých slov (polygramů) v příslušném jazyku.

Vigenérova šifra Používá periodicky několik různých posunutí abecedy. Klíčem bývalo obvykle nějaké slovo, které udávalo délku posunutí podle následující tabulky. a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Tak například klíč slizoun určoval posunutí 18 11 8 5 14 20 13. Otevřený text kocka leze dirou se zašifroval následovně: slizo unsl izoun kocka leze dirou c z k jo frrp lhfih

Tuto šifru popsal již v roce 1586 Blaise de Vigenére. Slabina: periodické heslo Šifru rozluštil až Charles Babbage (1791-1875), profesor matematiky na Cambridge University Řešení lze algoritmizovat pomocí indexu koincidence, který vymyslel William F. Friedman kolem roku 1920. Index koincidence je jeden z nejvýznamnějších statistických testů používaných v kryptologii.

Polyalfabetická šifra Podobná Vigenérově šifře, místo různých posunutí ale používá různé obecné jednoduché substituce. Každé písmeno otevřeného textu šifruje pomocí jiné permutace. Ideální je, pokud se žádná permutace nepoužívá dvakrát. abcdefghijklmnopqrstuvwxyz 1:gkqwhrjvoisnazcubdxplfytme 2:cintzuhsymjabvoelxwpkfqgrd 3:ekrwxpavqbslcfitudgjmhnyzo 4:dqcuimhvrelnwgofjkztysabpx koza Šifrujeme: s o o d

Šifrovací stroje Nevýhodou polyalfabetické šifry je složitost klíčů a jejich předávání. Proto byly v první polovině 20. století hojně používané šifrovací stroje. Nejznámější byly Enigma, Hagelin.

Transpoziční šifry Spočívají v přeházení pořadí (permutaci) písmen v otevřeném textu. Permutace bývala definována pomocí nějakého slova – klíče. Například pomocí klíče nezny se šifrovalo následovně: 21534 nezny tanco valab ychja azset rasu aacza tvyar cajeu obatn lhss Jednoduchá transpozice

Dvojitá transpozice. Používaná německou armádou v průběhu první světové války a po ní až do roku 1928. Také ji používala československá vláda v exilu v Londýně během druhé světové války ke komunikaci s domácím odbojem. Proto měl domácí odboj takové ztráty. Jak dvojitou transpozici rozluštit bylo popsáno ve francouzských novinách již na počátku první světové války v roce 1914. Řešení je velmi usnadněné, jsou-li šifrovány zprávy stejné délky.

Šifrování dvojitou transpozicí vyžaduje dvě hesla. Například nezny octopus Jednoduchá transpozice se použije dvakrát, napřed s prvním heslem, a takto získaný šifrový text se ještě jednou šifruje jednoduchou transpozicí určenou druhým heslem. Přání tancovala bych ja az se trasu tak chobotnice svému milému zašifruje za použití hesla nezny jako aacza tvyar cajeu obatn lhss a pokračuje dále 2163475 octopus aaczatv yarcaje uobatnl hss Dostane tak aaosa yuhzc aaatv elcrb stjn