Kybernetizace experimentu I

Slides:



Advertisements
Podobné prezentace
Elektrické obvody – základní analýza
Advertisements

Rychlokurz elektrických obvodů
Metody zpracování fyzikálních měření - 4 EVF 112 ZS 2009/2010 L.Přech.
Elektrotechnika Automatizační technika
Základní typy signálů Základní statistické charakteristiky:
Tato prezentace byla vytvořena
Základní zapojení operačního zesilovače.
Základní zapojení operačního zesilovače.
Tato prezentace byla vytvořena
Elektrotechnika Automatizační technika
Tato prezentace byla vytvořena
Návrh linearizovaného zesilovače při popisu rozptylovými parametry
Obvody střídavého proudu
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Výpočet základních analogových obvodů a návrh realizačních schémat
OPERAČNÍ ZESILOVAČE.
Název a adresa školy: Střední odborné učiliště stavební, Opava, příspěvková organizace, Boženy Němcové 22/2309, Opava Název operačního programu:
Snímače (senzory).
Základní vlastnosti A/D převodníků
ZPRACOVÁNÍ A ANALÝZA BIOSIGNÁLŮ
Elektrotechnika Automatizační technika
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Tato prezentace byla vytvořena
Tato prezentace byla vytvořena
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Tato prezentace byla vytvořena
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Technické prostředky PLC OB21-OP-EL-AUT-KRA-M Ing. Petr Krajča.
Dvojčinné výkonové zesilovače
Tato prezentace byla vytvořena
Měření elektrické kapacity
Analogově digitální převodník
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Určení parametrů elektrického obvodu Vypracoval: Ing.Přemysl Šolc Školitel: Doc.Ing. Jaromír Kijonka CSc.
Tato prezentace byla vytvořena
Tato prezentace byla vytvořena
Měření elektrického napětí
ELM - operační zesilovač
Nesinusové oscilátory s klopnými obvody
CW01 - Teorie měření a regulace © Ing. Václav Rada, CSc. cv ZS – 2010/2011 Ústav technologie, mechanizace a řízení staveb.
Tato prezentace byla vytvořena
Experimentální metody (qem)
Elektronické signály Co si lze představit pod pojmem signál ?
Metody zpracování fyzikálních měření - 1
Metody zpracování fyzikálních měření - 2
Vysokofrekvenční zesilovač
Struktura měřícího řetězce
Metody zpracování fyzikálních měření - 1
Servopohony. Servopohon Co je to servopohon ? *jsou to motory, u kterých lze nastavit přesnou polohu osy, a to pomocí zpětné vazby nebo koncového spínače.
REGULACE Základní pojmy Řídicí obvody Vlastnosti členů.
Operační zesilovače a obvody pro analogové zpracování signálů.
Odborný výcvik ve 3. tisíciletí Tato prezentace byla vytvořena v rámci projektu.
Digitální učební materiál Název projektu: Inovace vzdělávání na SPŠ a VOŠ PísekČíslo projektu: CZ.1.07/1.5.00/ Škola: Střední průmyslová škola a.
Odborný výcvik ve 3. tisíciletí Tato prezentace byla vytvořena v rámci projektu.
Výukový materiál zpracován v rámci projektu EU peníze školám
Číslicové - digitální multimetry (DMM)
Odborný výcvik ve 3. tisíciletí
Metody zpracování fyzikálních měření - 3
Digitální měřící přístroje
Kybernetizace experimentu I
Tato prezentace byla vytvořena
Elektrotechnická měření Osciloskop
Metody zpracování fyzikálních měření - 1
NÁZEV ŠKOLY: S0Š Net Office, spol. s r.o, Orlová Lutyně
OPERAČNÍ ZESILOVAČE Operační zesilovače.
T 3 / 1 Zesilovače -úvod (Amplifiers).
Princip operačního zesilovače
Měřící zesilovače - operační zesilovače
Senzory pro EZS.
Transkript prezentace:

Kybernetizace experimentu I NEVF 127 LS 2010/2011 L.Přech

Úvod do analogového a číslicového zpracování dat a řízení experimentu - osnova Fyzikální experiment a úloha počítače v něm Základní schéma počítačem řízeného experimentu Analogové a digitální zpracování dat Převod neelektrických veličin na elektrický signál a zpět (čidla a akční členy) Úprava analogových signálů (operační zesilovače – opakování) Vzorkování, kvantování, spektrum signálu, Nyquistovo kriterium

Model fyzikálního experimentu Stanovujeme závislost veličiny y na veličině x při daném parametru  (např. závislost proudu vzorkem na napětí při určité teplotě) Obvykle opakovaná měření pro diskrétní hodnoty xi j , určování střední hodnoty a odhad chyby x,  nastavované nebo implicitně závislé na čase x(t) (t) měření „bod po bodu“

Počítač jako automatické registrační zařízení Ruční nastavení x,  resp. x(t) (t) Automatický zápis hodnot (t) y(t) Vyhodnocení a zpracování často až po ukončení zápisu Využíváme rychlost registračního systému!

Počítačově řízený experiment Automatické nastavení x,  resp. x(t), (t) volně dle programu – automatické měření s cílem stabilizovat nebo řídit y nebo  - regulace Automatický zápis hodnot (t), y(t) Vyhodnocení a zpracování obvykle během měření

Základní schéma systému sběru dat a řízení experimentu Fyzikální veličiny Akční členy Sběr dat, řízení výstupů Úprava signálů Počítač Čidla

Fyzikální veličiny Elektrické povahy napětí proud odpor, vodivost, indukčnost, kapacita kmitočet, fáze perioda, střída impulzy, události Spojité nebo diskrétní (v hodnotě nebo čase, digitální signály) Neelektrické teplota poloha a pohyb, zrychlení vlhkost, tlak osvětlení hmotnost chemické složení …. Veličina vyjádřena časovým průběhem signálu - elektrické veličiny

Převod elektrických veličin na neelektrické a zpět Akční členy topné elementy zdroje světla ventily motory elmg. cívky …. Čidla termočlánky, termistory fotodiody průtokoměry, vakuometry snímače polohy a pohybu, tenzometry a akcelerometry piezoelektrické snímače tlaku Hallovy sondy vlhkoměry detektory částic krystalové snímače (rychlost napařování, teplota,…)

Spojitý vs. digitální svět - číslicový počítač – pracuje s diskrétní informací Digitální signály Přímé měření/řízení digitální vstupy/výstupy (jedno- a vícebitové logické signály) čas - frekvence, perioda, délka pulsu, střída signálu, fáze Analogové signály Přímé, převod A/D a D/A napětí (proud) Nepřímé – mezipřevod na časové veličiny nebo napětí/proud často pro ostatní elektrické veličiny: odpor/vodivost, kapacita, indukčnost

Analogové zpracování signálu Analogový signál upravujeme přímo analogovými elektronickými obvody Očekávané změny amplitudy a fáze zpravidla závisejí na frekvenci, kmitočtové charakteristiky nastaveny hodnotami pasivních součástek – málo flexibilní

Číslicové zpracování signálu ANALOG IN ANALOG OUT Finite Impulse Response Filter Číslicově-analogový převodník (DAC) Vzorkování (S/H) a analogově-číslicový převodník (ADC) Digitální zpracování (DSP) Rekonstrukční filter Anti-aliasing filter Výhody číslicového zpracování Méně komponent, deterministické stabilní chování, širší uplatnění Větší šumová odolnost, menší závislost na napájení, teplotě atd. Jednoduché přeladění filtrů, filtry s menšími tolerancemi, možnost self-testu Možnost implementace adaptivních filtrů

Rozdělení převodníků neelektrických veličin Přímý převod energie neelektrické veličiny – vlastní zdroj elektromotorické síly elektromagnetické, termoelektrické, fotoelektrické, piezoelektrické, Hallův jev, … Pasivní převodníky – potřebují vnější elektrický zdroj využívají závislost elektrické vlastnosti čidla na měřené veličině – magnetorezistivita, elektrický odpor na teplotě, indučnost na poloze jádra, … Zpětnovazební pasivní převodníky – zpětná vazba udržuje rovnováhu mezi měřenou veličinou a protipůsobícím elektrickým signálem

Příklad - termočlánek Přímý převod energie termoelektrická napětí Rozsah voltmetru Přímý převod energie termoelektrická napětí Uo = U1(Tref)+ U2 (T) – U3(Tref) Citlivost 7 – 50 V/°C Zesílení vst. zesilovače Rozlišení v bitech U1 T známe Uo U2 U3 Tref

Příklad - pasivní převodníky Převodník polohy (úhlu): Posuv jezdce -> proměnný odpor -> napětí Drátkový termoanemometr: Rychlost proudění -> míra ochlazování -> teplota -> odpor -> napětí Wheatstonův můstek

RTD - odporové teploměry (např. Pt) Malý odpor, typ. 100  Malá citlivost ~0.4 /°C 2-drátové měření – málo vhodné – úbytek napětí na přívodech 4-drátové zapojení – lepší, na měřicích přívodech pro napětí minimální úbytek 3-drátové zapojení – vhodné pro můstky (Wheatstonův )

Můstkové zapojení – RTD, tenzometry 3-drátové zapojení RTD ve Wheatstonově můstku – protilehlé větve RG1, RG2 kompenzují odpor přívodů Tenzometry v můstku – poloviční nebo úplný můstek – zvýšení citlivosti měření Použití tenzometrů: jejich odpor závisí na mechanickém napětí použití též jako převodníky jiné síly – zrychlení, tlak, vibrace

Příklad – čidlo se zpětnou vazbou Drátkový termoanemometr: zpětná vazba udržuje můstek vyvážený -> stabilizace odporu (teploty) sondy (výstupní napětí)2 ~ teplo ztrácené na sondě ~ rychlost proudění

Další příklady LVDT (lineární napěťový diferenciální transformátor) Měření lineárního posunu – rozdílná vazba do sekundárního vinutí L a P Čidla s interním převodem na proudovou smyčku 0-20 nebo 4-20 mA IS 20 4 X

Porovnání některých čidel Čidlo Elektrické vlastnosti Požadavky na úpravu signálu termočlánek Malé výstupní napětí, nízká citlivost, nelineární výstup Referenční teplotní čidlo pro kompenzaci studeného konce, velké zesílení, linearizace odporový teploměr Malý odpor (typ. 100 ), nízká citlivost, nelineární výstup Proudové buzení, 3-, 4-drátové zapojení, linearizace integrované teplotní čidlo Vysokoúrovňový výstup (~V), linearita Zdroj napájení, malé zesílení tenzometr Malý odpor, nízká citlivost, nelineární výstup Napěťové n. proudové buzení, vysoké zesílení, můstkové zapojení, linearizace, kalibrace bočníků čidlo s proudovým výstupem Proudová smyčka (4 – 20 mA typ.) Přesný rezistor termistor Odporové čidlo, vysoký odpor a citlivost, velmi nelineární Napěťové n. prodouvé buzení s referenčním rezistorem, linearizace aktivní akcelerometr Kapacitní manometr Kapacita závislá na tlaku (malé hodnoty) Buzení střídavým proudem, můstkové zapojení nebo oscilátor LVDT Střídavé napětí Buzení střídavým proudem, demodulace, linearizace

Obecné funkce obvodů pro úpravu signálu Zesílení analogových signálů Změny vst. signálu vhodně pokrývají rozsah ADC – zvětšení rozlišení, citlivosti, zvýšení poměru S/N Útlum Úprava velikosti velkých signálů (vysoké napětí...) Filtrace Snížení šumu v určité části spektra (např. 50, 60 Hz, vf filtry) Zabránění aliasingu (Nyquistův teorém) Izolace (optická, transformátory) Přerušení zemních smyček, snížení šumu, zabránění poškození zařízení, oddělení obvodů s nebezpečným napětím Multiplex Přepínání ADC mezi více kanály, volba způsobu připojení signálu Současné vzorkování více kanálů Buzení snímačů, můstková zapojení, 3- a 4- drátová měření Kompenzace studeného konce termočlánku

Operační zesilovač Operační zesilovač je širokopásmový diferenciální zesilovač se stejnosměrným vstupem, s velkým vstupním odporem Ri řádu stovky kΩ až několika MΩ, s malým výstupním odporem řádu 100 Ω a velkým zesílením větším než 104. Operační zesilovač byl původně používán jako základní jednotka analogových počítačů, diferenciálních analyzátorů sestavená z diskrétních prvků (tranzistory, odpory atd.). S rozvojem hybridních a později monolitických integrovaných obvodů se stal operační zesilovač samostatnou jednotkou, elektronickým prvkem. Původně používán v analogových počítačích, pro základní aritmetické operace sečítání, odečítání, dělení a násobení a rovněž pro integraci analogových signálů. Dnes uplatnění v řadě dalších elektronických obvodů jako stejnosměrné i střídavé zesilovače, komparátory, elektronický vzorkovací obvod (analogová paměť), klopné obvody a generátory signálů, aktivní filtry, převodníky z analogového signálu na číselnou hodnotu a naopak.

Ideální operační zesilovač – definice Zesílení ideálního operačního zesilovače v otevřené smyčce A a vstupní odpor Ri jsou nekonečně velké. Výstupní odpor Ro je nulový. I+ = I- = 0 Nemá ofset ani drift. Ofset = nenulový výstupní signál při zkratovaných a uzemněných vstupních svorkách Drift = změna ofsetu s časem a teplotou. Vliv součtového signálu je nulový, tj. činitel potlačení součtového signálu KCMR → ∞. Zesiluje rovnoměrně signály všech frekvencí včetně nulové; je to tedy stejnosměrně vázaný zesilovač. Výstupní úroveň nezávisí na napájení, rozkmit Eo není omezen. Jako zesilovač s velkým zesílením není operační zesilovač prakticky použitelný bez záporné zpětné vazby. Teorie ideálního operačního zesilovače je tak v podstatě teorií jeho zpětné vazby. Eo = A(E+ - E-) + A/KCMR (E+ + E-)/2

Reálný operační zesilovač Skutečné (reálné) OZ se liší od ideálních Početní chyby – konečné hodnoty A, Ri, Ro Statické chyby Ofset, drift, vstupní proudy a jejich nesymetrie, teplotní závislost Závislost výstupu na součtovém vstupním signálu Závislost výstupu na napájení Omezení rozkmitu výstupu, saturační napětí Dynamické chyby Závislost A na kmitočtu, změna fáze výstupního signálu s kmitočtem Konečná rychlost přeběhu Šumová složka ve výstupu (vnitřní zdroje i zesílení šumu na vstupu)

Základní zapojení OZ – invertující zesilovač Pro ideální OZ (Ei = 0, is = 0) Pro obecné pasivní prvky

Základní zapojení OZ – neinvertující zesilovač Pro ideální OZ (Ei = 0, is = 0) Pro obecné pasivní prvky

Základní zapojení OZ – napěťový sledovač Pro ideální OZ (Ei = 0, is = 0)

Vliv zpětné vazby OZ βA < 0 záporná ZV (A*<A) βA > 0 kladná ZV (A*>A) βA → 1 nestabilní zapojení (A* → ∞) |A| → ∞ … A β Ui βUo U´i Uo Zesílení id. OZ s uzavřenou ZV smyčkou je dáno jen parametry ZV

Porovnání ideálního a reálného OZ Základní zapojení s ideálním OZ Základní zapojení s reálným OZ A – zesílení OZ s otevř. smyčkou, β – koef. zpětné vazby z výstupu na vstup, např. pro invertující zapojení

Porovnání ideálního a reálného OZ Konečné zesílení v otevřené smyčce A: Nenulový výstupní odpor Rv, odpor zátěže RL

Statické chyby OZ a jejich kompenzace

Rychlost přeběhu

Šum operačního zesilovače

Bodeho diagram

Stabilita zesilovače

Rozdílový zesilovač s OZ

Rozdílový-součtový zesilovač

Zesilovač pro můstek

Proudové a výkonové posílení výstupu OZ

Nelineární prvky ve zapojeních s OZ

Funční měniče

Obvod ideální diody

Obvod absolutní hodnoty

Vrcholový detektor

Vzorkovací obvod

Číslicové zpracování signálu Digitalizace – 3 fáze Vzorkování vzorkovací obvod Kvantování vlastní A/D převodník Kódování

Vzorkovací obvod

Charakteristiky vzorkovacího obvodu

Obsahuje-li frekvenční spektrum signálu složky s frekvencí větší než Nyquistova frekv. (fN=fV/2), neurčuje výstupní signál vzorkovacího obvodu jednoznačně průběh signálu na vstupu:

Aliasing

Další funkce – synchronní detekce Synchronní detekce je technika zpracování signálu, která: umožňuje separovat i velmi slabý signál v silném šumu - např.: příjem signálů v radiotechnice zpracování signálu se silným rušením vyžaduje referenční signál s přesně danou frekvencí a fází budí fyzikální proces moduluje měřenou veličinu Výstupní signál Synchronní detektor - harmonický nebo obdélníkový signál

Modulační zesilovač

Další funkce Komprese dynamiky signálů Bell µ-255 Linearizace signálu (častěji sw) Úprava digitálních signálů Převod úrovní, hystereze vstupů, galvanická izolace(optická nebo transformátorová), výkonové zesílení, buzení relé a stykačů