Transkripce a translace

Slides:



Advertisements
Podobné prezentace
6. Nukleové kyseliny Nukleové kyseliny jsou spolu s proteiny základní a nezbytnou složkou živé hmoty. Hlavní jejich funkce je uchování genetické informace.
Advertisements

Molekulární základy dědičnosti
Transkripce, translace, exony, introny
Transkripce (první krok genové exprese: Od DNA k RNA)
BIOLOGIE 1 Rostliny Biologické vědy Metody práce v biologii
GENETIKA NUKLEOVÉ KYSELINY DNA, RNA
NUKLEOVÉ KYSELINY BIOCHEMIE.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je RNDr. Pavlína Koch ová CZ.1.07/1.5.00/ Autor materiálu:RNDr. Pavlína Kochová Datum.
Transkripce (první krok genové exprese)
Nově syntetizovaný řetězec DNA
Transkripce (první krok genové exprese)
Replikace DNA Milada Roštejnská Helena Klímová
Replikace DNA Tato prezentace se zabývá procesem Replikace DNA.
Transkripce a translace
REGULACE GENOVÉ EXPRESE
Proteosyntéza RNDr. Naďa Kosová.
Struktura a funkce buněčného jádra
Registrační číslo projektu: CZ.1.07/1.5.00/ Číslo DUM:
Nukleové kyseliny Struktura DNA a RNA Milada Roštejnská Helena Klímová
Chromozóm, gen eukaryot
METABOLISMUS BÍLKOVIN II Anabolismus
Genetický kód Jakmile vznikne funkční mRNA, informace v ní obsažená může být ihned použita pro syntézu proteinu. Pravidla, kterými se řídí prostřednictvím.
NUKLEOVÉ KYSELINY A JEJICH METABOLISMUS
Molekulární základy dědičnosti
Pro charakteristiku plazmidu platí: je kruhová DNA
Molekulární genetika.
Nukleové kyseliny RNDr. Naďa Kosová.
Od DNA k proteinu.
Didaktické testy z biochemie 4 Replikace Milada Roštejnská Helena Klímová.
GENETICKÁ INFORMACE je informace, která je primárně obsažena v nukleotidové sekvenci v nukleotidových sekvencích jsou obsaženy následující informace: o.
Milada Teplá, Helena Klímová
EXPRESE GENETICKÉ INFORMACE Transkripce
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í
Nukleové kyseliny Přírodní látky
Nukleové kyseliny Opakování
Didaktické testy z biochemie 5 Transkripce Milada Roštejnská Helena Klímová.
Sacharidová složka nukleotidů
NUKLEOVÉ KYSELINY (NK)
Transkripce a úpravy RNA
2014 Výukový materiál GE Tvůrce: Mgr. Šárka Vopěnková Projekt: S anglickým jazykem do dalších předmětů Registrační číslo: CZ.1.07/1.1.36/
Základní pojmy molekulární biologie Biomakromolekuly
Autor: Ing. Michal Řehulka  Přírodní makromolekulární látky (Biopolymery)  Vytvářejí dlouhé vláknité molekuly  Nesou a uchovávají genetickou informaci.
EU peníze středním školám Název vzdělávacího materiálu: Nukleové kyseliny II. - RNA, proteosyntéza Číslo vzdělávacího materiálu: ICT10/16 Šablona: III/2.
1. 1.Molekulární podstata dědičnosti. Čtyři hlavní skupiny organických molekul v buňkách.
Didaktické testy z biochemie 5
DIGITÁLNÍ UČEBNÍ MATERIÁL
Název školy: Gymnázium, Chomutov, Mostecká 3000, příspěvková organizace Autor: Datum tvorby: Mgr. Daniela Čapounová Název: VY_32_INOVACE_06C_19_Proteosyntéza.
Metabolismus bílkovin biosyntéza
TRANSKRIPCE DNA.
NÁZEV ŠKOLY: ČÍSLO PROJEKTU: NÁZEV MATERIÁLU: TÉMA SADY: ROČNÍK:
GENETIKA dědičnost x proměnlivost.
Metabolické děje II. – proteosyntéza
Nukleové kyseliny Charakteristika: biopolymery
Nukleové kyseliny obecný přehled.
Předmět: KBB/BB1P; KBB/BUBIO
Syntéza a postranskripční úpravy RNA
Nukleové kyseliny Struktura DNA a RNA
Od DNA k proteinu - v DNA informace – geny – zápis ve formě 4 písmen = nukleotidů = deoxyribóza, fosfátový zbytek, báze (A, T, C, G) - DNA = dvoušroubovice,
Milada Teplá, Helena Klímová
Molekulární základ dědičnosti
Molekulární základy genetiky
Replikace DNA Milada Roštejnská Helena Klímová
NUKLEOVÉ KYSELINY Dusíkaté báze Cukry Fosfát guanin adenin tymin
17-Nukleové kyseliny a proteosyntéza
MiRNA
DUM č. 18 v sadě 22. Ch-1 Biochemie projekt GML Brno Docens
37. Bi-2 Cytologie, molekulární biologie a genetika
37. Bi-2 Cytologie, molekulární biologie a genetika
Zdvojování genetické paměti - Replikace DNA
Transkript prezentace:

Transkripce a translace Jestliže buňka potřebuje nějaký konkrétní protein, je nukleotidová sekvence v patřičné oblasti dlouhé molekuly DNA v chromosomu nejprve zkopírována do mRNA. Tato RNA je přímo využívána jako templát (předloha, matrice) pro tvorbu proteinů. Genetická informace je předávána z DNA do RNA procesem zvaným transkripce a následně z RNA do proteinu procesem zvaným translace. transkripce translace DNA mRNA Protein Obsah Obr. 1. Průběh proteosyntézy

Úsek DNA je přepisován do RNA Prvním krokem pro uplatnění genetické informace v buňce je přepsání části nukleotidové sekvence DNA – genu – do nukleotidové sekvence RNA. Tento proces se nazývá transkripce. DNA transkripce mRNA Transkripce začíná rozvolňováním krátkého úseku dvoušroubovice DNA, jeden z řetězců pak slouží jako templát pro syntézu RNA. Dvoušroubovice DNA Obsah

Úsek DNA je přepisován do RNA Ribonukleotidová sekvence RNA je určena komplementárním párováním bází. Obsah Obr. 2. Párování bází

Úsek DNA je přepisován do RNA Jestliže se volný ribonukleotid páruje s deoxyribonukleotidem v templátové DNA, je tento ribonukleotid kovalentně připojen fosfodiesterovou vazbou k rostoucímu řetězci RNA v enzymově katalyzované reakci. Ribonukleosidtrifosfáty Nově syntetizovaná mRNA Na snímku je vytvořená animace znázorňující připojení ribonukleosidtrifosfátu k nově se syntetizující mRNA. Templát pro syntézu RNA Dvoušroubovice DNA Obsah Směr transkripce Obr. 3. Průběh transkripce

Úsek DNA je přepisován do RNA 3' Spustit animaci Nově syntetizovaná mRNA 5' Ribonukleosidtrifosfát 5' 3' Animace se spustí po kliknutí na animační tlačítko „Spustit animaci“. Na snímku je vytvořená animace zobrazující transkripci. Transkripce je katalyzována enzymem nazývaným RNA-polymerasa, který připojuje k templátu správné ribonukleosidtrifosfáty (ATP, CTP, GTP a UTP). Ribonukleosidtrifosfáty jsou znázorněny modře. Templát pro syntézu RNA 3' Obsah Obr. 4. Přepis úseku DNA do RNA 5'

RNA-polymerasa Obsah Ribonukleosidtrifosfáty Templát pro syntézu RNA Rozvíjecí místo Obsah Obr. 8. RNA-polymerasa

Posttranskripční úpravy RNA u eukaryot DNA je uzavřena v jádře, ale ribosomy se nacházejí v cytoplasmě. mRNA musí být transportována z jádra do cytoplasmy malými jadernými póry. Před opuštěním z jádra však mRNA podléhá posttranskripčním úpravám. Transkripcí vzniká nejprve primární transkript (Pre-mRNA) neboli heterogenní jaderná RNA (hnRNA), která se dále upravuje. Upravená mRNA je transportována do cytoplasmy a tam překládána na proteiny (translace). Posttranskripční úpravy RNA je možné z učiva středoškolské biochemie vynechat. DNA (v jádře) Posttranskripční úpravy transkripce translace Pre-mRNA (v jádře) mRNA (vznik v jádře, transport do cytoplasmy) Protein Obsah Obr. 9. Průběh proteosyntézy

Exony a introny Eukaryotní DNA obsahuje kromě kódujících sekvencí (tzv. exony) i nekódující sekvence (tzv. introny). Introny nejsou překládány do proteinů. Celá DNA včetně exonů i intronů je transkribována do mRNA (přesněji do Pre-mRNA). Introny jsou odstraňovány enzymy (tzv. sestřihové enzymy) a exony jsou spojeny dohromady. Tento krok se nazývá sestřih (anglicky RNA splicing). Obr. 10. Exony a introny Rozdělení DNA na exony a introny je možné z učiva středoškolské biochemie vynechat. Na snímku je vytvořená animace znázorňující odstranění intronů a spojení exonů. mRNA Exony Introny Obsah 2. Odštěpení intronů a spojení exonů 1. Přiblížení obou konců intronů