Radim Farana Podklady pro výuku

Slides:



Advertisements
Podobné prezentace
Vestavné mikropočítačové systémy
Advertisements

Aplikační a programové vybavení
Paritní bity Hashovací funkce Samoopravující kódy
Základy informatiky přednášky Kódování.
Vznik a vývoj teorie informace
Fakulta životního prostředí Katedra informatiky a geoinformatiky
Kombinatorické algoritmy
Lineární algebra.
LOGISTICKÉ SYSTÉMY 7/14.
Základy informatiky přednášky Efektivní kódy.
Informatika pro ekonomy II přednáška 2
SWI072 Algoritmy komprese dat1 Algoritmy komprese dat Statistické metody komprese dat a Shannon-Fanův kód.
REDUKCE DAT Díváme-li se na soubory jako na text, pak je tento text redundantní. Redundance vyplývá z:  některé fráze nebo slova se opakují  existuje.
Radim Farana Podklady pro výuku pro akademický rok 2013/2014
Radim Farana Podklady pro výuku pro akademický rok 2013/2014
SWI072 Algoritmy komprese dat1 Algoritmy komprese dat Teorie informace.
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Základy číslicové techniky
Digitální učební materiál
Základy číslicové techniky
ZPŮSOBY ZABEZPEČENÍ DIGITÁLNÍCH SIGNÁLŮ
Základy informatiky přednášky Bezpečnostní kódy.
Kódování Radim Farana Podklady pro výuku. Obsah Cyklické kódy.  Reedovy-Solomonovy kódy.
Číselné soustavy david rozlílek ME4B
Cyklické kódy Přednáška 6. Perfektní kód A.Opravuje největší množství chyb B.Má nejvíce kódových slov C.Má nejlepší poměr počet chyb/délka kódu.
Radim Farana Podklady pro výuku
Systematické a nesystematické
Základy číslicové techniky
Perfektní kódy.
Radim Farana Podklady pro výuku
Fakulta životního prostředí Katedra informatiky a geoinformatiky
Datové typy a struktury
Základy číslicové techniky
Aplikační a programové vybavení
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Kódování Radim Farana Podklady pro výuku. Obsah Unikátní identifikátory. Kontrolní číslice, GUI,  realizace kontrolních číslic. Kódy konstantní změny,
Elektron v periodickém potenciálovém poli - 1D
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektuCZ.1.07/1.5.00/ Název projektuEU peníze středním školám Masarykova OA Jičín Název školyMASARYKOVA OBCHODNÍ.
Rozpoznávání v řetězcích
Úvod do teorie konečných automatů
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
SWI072 Algoritmy komprese dat1 Algoritmy komprese dat Huffmanův kód - aplikace.
Radim Farana Podklady pro výuku
Vektorové prostory.
Mlhavost Fuzzy logika, fuzzy množiny, fuzzy čísla
Radim Farana Podklady pro výuku
Algoritmy komprese dat
Informatika pro ekonomy přednáška 4
 Jak se dělí číselné soustavy?  V jaké technice se používá dvojková soustava?  Jaké čísla používá?
Kódování Radim Farana Podklady pro výuku. Obsah Cyklické kódy.
Linková úroveň Úvod do počítačových sítí. 2 Problémy při návrhu linkové úrovně Služby poskytované síťové úrovni Zpracování rámců Kontrola chyb Řízení.
Lineární kódy.
McEllisova šifra.
Lineární kódy.
Reprezentace dat v počítači. základní pojmy  BIT označení b nejmenší jednotka informace v paměti počítače název vznikl z angl. BINARY DIGIT (dvojkové.
Složitost algoritmu Vybrané problémy: Při analýze složitosti jednotlivých algoritmů často narazíme na problém, jakým způsobem vzít v úvahu velikost vstupu.
Lineární kódy.
Úvod do databázových systémů
Zabezpečení informace
AUTOMATIZAČNÍ TECHNIKA Kódy
Zabezpečení informace
Zabezpečení přenosu dat
ZPŮSOBY ZABEZPEČENÍ DIGITÁLNÍCH SIGNÁLŮ
Informatika pro ekonomy přednáška 4
Číselné soustavy a kódy
Gödelova(y) věta(y).
Informatika pro ekonomy přednáška 4
Úvod do počítačových sítí - Linková úroveň
Transkript prezentace:

Radim Farana Podklady pro výuku Kódování Radim Farana Podklady pro výuku

Obsah Základy pojmy z diskrétních kódů. Druhy kódů. Nejkratší kódy. Detekce chyb, Hammingova vzdálenost. Kontrolní a samoopravné kódy. Lineární kódy. Hammingovy kódy. Opakovací kódy.

Kód Popis přiřazení kódových slov jednotlivým zprávám (kódová kniha). Kódové slovo je posloupnost znaků použité abecedy. Abeceda je množina znaků (binární abeceda Z2 = {0, 1}) Minimální délka kódového slova: N*(x) = - log2(P(x)) [bit]

Vlastnosti kódu prosté kódování: různým zprávám odpovídají různá kódová slova, jednoznačná dekódovatelnost: ze znalosti zakódované zprávy lze jednoznačně určit zprávu zdrojovou, Kód K : A → B musí být prostým zobrazením.

Problém dekódování Zpráva Kód A 01 001 111 01 001 111 Posloupnost zpráv (kódových slov): 00100101111 nelze jednoznačně dekódovat Kód B 01 011 111 Posloupnost zpráv (kódových slov): 00101101111 lze jednoznačně dekódovat? Ano, ale jen „odzadu“, po přijetí celé posloupnosti zpráv. Kód C 10 110 111 Posloupnost zpráv (kódových slov): 01011010111 můžeme dekódovat on-line. Důvod? Žádné kódové slovo není začátkem jiného kódového slova (prefixem).

Druhy kódů Prefixový kód je prosté kódování u kterého žádné kódové slovo není začátkem jiného kódového slova. Blokový kód je prosté kódování u kterého mají všechna kódová slova stejnou délku (počet znaků). Protože musí být prostým zobrazením, je nutně také prefixovým kódem.

Použití kódů Nejkratší (optimální) kódy R → 0, L → min, Bezpečnostní kódy detekční kódy (odhalují chyby), samoopravné kódy (opravují chyby), Speciální kódy kódy konstantní změny (Grayův kód), čárové kódy, alfanumerické kódy, číselné kódy (datové formáty), …

Nejkratší kódy Pokud má R → 0, neboli L → min, pak N(i) → N*(i) pro i = 1, 2, … n. Hledáme vhodný algoritmus konstrukce takového kódu: Huffmanův kód (1952), Shannonův kód. Algoritmy se liší, stejně tak i dosažené výsledky, Huffmanův kód se snáze algoritmizuje a tedy také realizuje Huffman, David A. * 1925, USA + 7. 10. 1999 California, USA http://www.ucsc.edu/currents/99-00/10-11/huffman.html

Huffmanův kód Příklad A P(i) 0,4 0,3 0,1 B C D E Zpráva Triviální případ Zpráva P(i) 1 > 2 < kód 1.redukce 0,4 0,3 0,2 0,1 1 2.redukce 0,4 0,3 1 Redukovaná abeceda Zpráva P(i) 1 » 2 > redukce 3 < 2,3 kód expanze 10 11 3.redukce 0,6 0,4 1 znaky 1 kód 1 00 011 0101 0100 Postup: seřazení podle pravděpodobnosti, postupná redukce a oprava pořadí, přiřazení znaků 0, 1 a zpětná expanze. Problémy: definice pořadí zpráv pro stejnou P(i), zařazení skupin se stejnou P(i), pořadí přiřazení znaků 0, 1.

Shannon-Fanova konstrukce kódu Zpráva A, B C, D, E A B C D, E D E 1 bit Fano, Robert Mario 1917 Turin, Italy http://en.wikipedia.org/wiki/File:Robert_Fano_2012-03-13.jpg Příklad Zpráva A B C D E P(i) 0,4 0,3 0,1 0,1 0,1 1 1 1 Postup: seřazení podle pořadí pravděpodobnosti, rozdělení na skupiny s co nejbližší pravděpodobností, přiřazení znaků 0, 1. 1 kód 10 1100 1101 111

Detekce chyb Množinu všech slov rozdělíme na slova kódová a slova nekódová. t-násobná chyba změní kódové slovo na nekódové, pokud se dvě kódová slova liší ve více než t znacích. Hammingova vzdálenost je počet znaků ve kterých se dvě kódová slova liší. Hammingova vzdálenost kódu d je nejmenší z nich.

Hammingova vzdálenost Hamming, Richard Wesley * 11. 2. 1915 Chicago, Il. USA + 7. 1. 1998 Monterey, Cal. USA http://cm.bell-labs.com/cm/cs/alumni/hamming/ Hammingova vzdálenost nekódová slova 001 d = 1 d = 1 000 010 011 kódové slovo kódové slovo 100 Kód odhaluje t-násobné chyby, pokud je Hammingova vzdálenost kódu d > t. Označení kódů (blokových): (n, k)-kód počet znaků počet informačních znaků (4, 3)-kód má jeden kontrolní znak, je schopen mít d = 2.

Opravování chyb nekódová slova 001 011 d = 1 d = 1 000 010 111 d = 2 kódové slovo kódové slovo 110 100 d = 3 Kód opravuje t-násobné chyby, pokud je Hammingova vzdálenost kódu d > 2.t.

Kód dvourozměrné kontroly parity Informační znaky zapíšeme do matice typu (p, q). Každému řádku přidáme jeden symbol kontroly parity řádku, podobně každému sloupci kontrolu parity sloupce. Paritě sloupce parit řádků pak znak „kontrola kontrol“, volený tak, aby i parita výsledné matice byla sudá. Např. pro p = 7 a q = 3 obdržíme ASCII (32, 21)-kód. Tento kód opravuje jednoduché chyby. Příklad

Lineární kódy (maticové kódy) Kódové slovo chápeme jako řádkový vektor v = [ 0 0 1]. Lineární kombinací libovolného počtu kódových slov vznikne opět kódové slovo. Kód je možno popsat pomocí generující matice (kterou tvoří báze kódu). 1 G = v = z.G

Systematické kódy Informační slovo tvoří začátek kódového slova. Určení informačního slova (dekódování) je triviální. Je možno snadno určit kontrolní matici kódu A syndrom přijatého slova Nenulový syndrom indikuje chybu. G = E B H = -B E’ T s = H.v T

Hammingovy kódy Opravují jednoduché chyby a jsou perfektní = při daných vlastnostech mají minimální možnou redundanci. Kód s m kontrolními znaky (m = 2, 3, …) má délku n = 2m – 1. Sloupce kontrolní matice tvoří binární rozvoj čísel 1, 2, …, 2m - 1 Nenulový syndrom je binárním rozvojem pozice chyby.

Opakovací kódy Velmi jednoduše se generují kódová slova i vyhodnocují přijatá slova. Jsou perfektní. Opakovací (3, 1)-kód se shoduje s Hammingovým (3, 1)-kódem.