Třídění 2. a 3. stupně: orientační mapa možností bivariátních analýz

Slides:



Advertisements
Podobné prezentace
Testování neparametrických hypotéz
Advertisements

Analýza kvantitativních dat I./II. Typy dat Jiří Šafr jiri.safr(AT)seznam.cz Poslední aktualizace 26/2/2012 UK FHS Historická sociologie, Řízení a supervize.
Kvantitativní metody výzkumu v praxi
Jiří Šafr jiri.safr(zavináč)seznam.cz
Cvičení 6 – 25. října 2010 Heteroskedasticita
Lineární regresní analýza Úvod od problému
Obsah statistiky Jana Zvárová
Jiří Šafr jiri.safr(zavináč)seznam.cz
Analýza kvantitativních dat I.
Analýza dat.
Řízení a supervize v sociálních a zdravotnických organizacích
Analýza kvantitativních dat II. / Praktikum Vícenásobné výběrové otázky (Multiple response) Jiří Šafr jiri.safr(zavináč)seznam.cz poslední aktualizace.
Analýza kvantitativních dat I./II. & Praktikum elementární analýzy dat
Charakteristiky variability
Korelace a elaborace aneb úvod do vztahů proměnných
Korelace a elaborace aneb úvod do vztahů proměnných
Úvod: Vytvoření datové matice a pořízení dat Výzkum TV & knihy Jiří Šafr FHS UK, HiSo a ŘS Analýza kvantitativních dat AKD I. (II.) / Praktikum LS 2011,
Lineární regrese.
Biostatistika 6. přednáška
Další spojitá rozdělení pravděpodobnosti
Biostatistika 7. přednáška
- Pojmy - SPSS Statistické zpracování kvantitativních šetření.
Ekonometrie „ … ekonometrie je kvantitativní ekonomická disciplína, která se zabývá především měřením v ekonomice na základě analýzy reálných statistických.
Pohled z ptačí perspektivy
Jiří Šafr jiri.safr(zavináč)seznam.cz
Teorie psychodiagnostiky a psychometrie
Korelace a elaborace aneb úvod do vztahů proměnných
Analýza kvantitativních dat I. Vztahy mezi 3 znaky v kontingenční tabulce - úvod Jiří Šafr jiri.safr(zavináč)seznam.cz poslední aktualizace
Analýza kvantitativních dat II. TEST 1 (v LS 2012) Aktualizované verze jsou k dispozici na Jiří Šafr jiri.safr(zavináč)seznam.cz.
Jiří Šafr jiri.safr(AT)seznam.cz Poslední aktualizace 11/3/2014
Praktikum elementární analýzy dat Třídění 2. a 3. stupně UK FHS Řízení a supervize (LS 2012) Jiří Šafr jiri.safr(zavináč)seznam.cz poslední aktualizace.
8. Kontingenční tabulky a χ2 test
Pearsonův test dobré shody chí kvadrát
Biostatistika 8. přednáška
Kvantitativní metody výzkumu v praxi
Korelace.
Biostatistika 1. přednáška Aneta Hybšová
PSY717 – statistická analýza dat
Map of bivariate analyses configuration (bivariate and trivariate) UK FHS Historical sociology (2014) Jiří Šafr jiri.safr(AT)seznam.cz updated 2/6/2014.
Popisná analýza v programu Statistica
1. cvičení
Úvod: Vytvoření datové matice a pořízení dat Výzkum TV & knihy Jiří Šafr FHS UK, HiSo a ŘS Analýza kvantitativních dat AKD I. (II.) / Praktikum LS 2011,
Míry asociace obecná definice – síla a směr vztahu
Analýza kvantitativních dat I. Vstupní test ze znalostí designu kvantitativního sociologického výzkumu Jiří Šafr jiri.safr(at)seznam.cz poslední aktualizace.
AKD 1 (7/5) Transformace – vytváření nových proměnných: COMPUTE → SUMA celkový počet knih Konstanta → Student FHS COUNT → knihomol (2 x III. Tercil)
Jiří Šafr jiri.safr(zavináč)seznam.cz
Popisné charakteristiky statistických souborů. ZS - přesné parametry (nelze je měřením zjistit) VS - výběrové charakteristiky (slouží jako odhad skutečných.
Měření v sociálních vědách „Měřit všechno, co je měřitelné, a snažit se učitnit měřitelným vše, co dosud měřitelné není“. (Galileo Galilei)
TESTY א 2 (CHÍ-kvadrát) TEST DOBRÉ SHODY TEST DOBRÉ SHODY TEST NEZÁVISLOSTI TEST NEZÁVISLOSTI Testy pro kategoriální veličiny Testy pro kategoriální veličiny.
Testování hypotéz Testování hypotéz o rozdílu průměrů  t-test pro nezávislé výběry  t-test pro závislé výběry.
INDUKTIVNÍ STATISTIKA
Opakování – přehled metod
Jiří Šafr jiri.safr(AT)seznam.cz Poslední aktualizace 22/2/2017
Popisná analýza v programu Statistica
Regresní analýza výsledkem regresní analýzy je matematický model vztahu mezi dvěma nebo více proměnnými snažíme se z jedné proměnné nebo lineární kombinace.
Spojitá a kategoriální data Základní popisné statistiky
Hodnocení závislosti STAT metody pro posouzení závislosti – jiné pro:
ORDINÁLNÍ VELIČINY Měření variability ordinálních proměnných
Typy proměnných Kvalitativní/kategorická binární - ano/ne
Metodologie pro ISK 2 Úvod do práce s daty
Úvod do induktivní statistiky
Metodologie pro ISK 2 Kontrola dat Popis kategorizovaných dat
Statistika a výpočetní technika
Analýza kardinálních proměnných
Lineární regrese.
7. Kontingenční tabulky a χ2 test
Jiří Šafr jiri.safr(zavináč)seznam.cz
Jiří Šafr jiri.safr(zavináč)seznam.cz
Třídění 2. a 3. stupně: orientační mapa možností bivariátních analýz
Základy statistiky.
Transkript prezentace:

Třídění 2. a 3. stupně: orientační mapa možností bivariátních analýz UK FHS Historická sociologie, Řízení a supevize LS 2012, 2013, 2014 Analýza kvantitativních dat I. Třídění 2. a 3. stupně: orientační mapa možností bivariátních analýz Jiří Šafr jiri.safr(zavináč)seznam.cz poslední aktualizace 21. 4. 2014

Struktura „Orientační mapa“ analýzy vztahu 2 proměnných: Spojitá × spojitá Spojitá (závislá) × kategoriální (nezávislá) Kategoriální × kategoriální Kontingenční tabulky Třídění 3. stupně (dtto) Na co s dát pozor (výběrová data vs. census) Jak to má vypadat – úprava tabulek a dalších výstupů

„Orientační mapa“ analýzy 2 proměnných Hlavním cílem výzkumu je testovat hypotézy 2.řádu = vztah dvou (a více) proměnných. (Jak) souvisí spolu hodnoty jedné a druhé proměnné? Například: Klesá počet přečtených knih za rok s dobou, kterou člověk věnuje sledování televize? Je počet přečtených knih za rok stejný ve všech skupinách studentů (obory studia&ročník)? Proměnné existují ve 2 základních typech: kategoriální (nominální a ordinální) spojité – kardinální (číselné) → různé varianty jejich kombinací při analýze

Spojitá × spojitá, např. počet přečtených knih a věk „Orientační mapa“ analýzy dvou proměnných – přehled analytických nástrojů Spojitá × spojitá, např. počet přečtených knih a věk → korelační koeficient (Pearsonův), bodový X-Y graf Spojitá (závislá) × kategoriální (nezávislá) např. např. počet přečtených knih a obor studia → průměry v podskupinách, koeficient Eta, graf průměrů v podskupinách (Barchart pro mean, Line-multiple nebo Boxplot, Errorbar) Kategoriální × kategoriální např. oblíbené literární žánry a obor studia → kontingenční tabulka, sloupcový graf (Barchart) pro % koeficient kontingence (CC), Phi, Gama …

Spojitá × spojitá Korelace (a nebo) X-Y graf Číselná proměnná → ideální situace: nejlepší způsob měření, nejsofistikovanější analýzy, možnost převodu na kategoriální Korelace (a nebo) X-Y graf CORRELATIONS knihy_celk WITH TV. GRAPH /SCATTERPLOT(BIVAR) =knihy_celk WITH TV. R - korelační koeficient R2 - koeficient determinace R = √R2 a R2 = R × R zde √0,066 = 0,257 ALE! Korelace měří lineární vztah (přímou úměru) a předpokládá „normální“ rozložení proměnných. Závislosti mohou mít i jinou než lineární povahu, proto si raději udělejte i X-Y (Scatter plot) → souvislosti jsou vizuálně vidět Pozor na Outliery – extrémní hodnoty znaků (a jejich kombinace)

Spojitá (závislá) × kategoriální (nezávislá) V principu porovnáváme průměry závislé - spojité v kategoriích nezávislé proměnné + kontrola rozptylu (směrodatné odchylky StD ve skupinách) missing values studium (5 6). MEANS knihy_celk BY studium. GRAPH /BAR(SIMPLE)=MEAN(knihy_celk) BY studium. *pro výběrová data = vzorek z populace) Intervalový odhad průměru s konfidenčním int.:. GRAPH ERRORBAR (CI) knihy_celk BY studium.

Kategoriální × kategoriální Kontingenční tabulka: hledáme souvislosti pomocí spoluvýskytu v relativních četnostech (%) Odchylky od očekávané=teoretické četnosti (→ znaménkové schéma) Pro ordinální znaky sledujeme krajní kategorie a kupení na diagonále. Vidíme i vztahy spoluvýskytu, které nejsou lineární (pro nominální znaky) CROSSTABS knihy_celk3t BY TV3t . CROSSTABS knihy_celk3t BY TV3t /cel = col. CROSSTABS knihy_celk3t BY TV3t /cel = col count. *+ test homogenity; míry asociace / korelace. CROSSTABS knihy_celk3t BY TV3t /cel = col / STATISTICS CC CORREL LAMBDA . Vztah znaků v tabulce lze vyjádřit i jedním číslem: pro nominální (a ordinální) znaky: koef. kontingence apod. (CC, Cramérovo V, Lambda) → vyjadřují i nelineární souvislosti pro ordinální znaky (navíc): pořadové korelace (Gama, Spearmanův koef. pořadové korelace (ró), Kendallovo tau-b/ tau-c, Somersovo d) → vyjadřují (víceméně) pouze lineární souvislost Vždy kontrolujeme počet absolutních četností! Pod cca 5 → problém (→ nespolehlivé závěry) → sloučit kategorie.

Třídění 3. stupně Úvod Pro spojitou závislou proměnnou a kategoriální nezávislé proměnné → průměry v podskupinách

Vztah dvou proměnných: spojitá (závislá) × kategoriální (nezávislá) v podskupinách třetí proměnné Průměrný počet přečtených knížek podle studijních skupin v podskupinách dle pohlaví GRAPH /BAR(GROUPED)=MEAN(knihy_celk) BY Studium BY pohlavi.

Vztah dvou proměnných: spojitá (závislá) × kategoriální (nezávislá) v podskupinách třetí proměnné To samé v tabulce Pozor na absolutní četnosti! MEANS knihy_celk BY Studium BY pohlavi.

K třídění 3. stupně v kontingenční tabulce (pro %) viz prezentaci Vztahy mezi 3 znaky v kontingenční tabulce - úvod http://metodykv.wz.cz/AKD1_kontg_tab3st_uvod.ppt

Na co s dát pozor

Výběrová data vs. census Máme-li data z náhodného (dobrého kvótního) výběru z populace (tj. vzorek) , pak k testování hypotéz můžeme (měli bychom) přistoupit pomocí principů statistické inference (statistické testy; intervalové odhady → viz AKDII. http://metodykv.wz.cz/index.htm#analyza2 ) A naopak máme-li kompletní populaci (census) statistické testy nedávají smysl.

Pozor na … Nízké četnosti zejména při spoluvýskytu některých kategorií v kontingenčních tabulkách → sloučit (překódovat) Outliery = extrémní hodnoty → rekódovat na „nižší ale smysluplnou“ hodnotu (nebo případně označit jako chybějící hodnoty)

Ukázky jak prezentovat tabulky a interpretovat vztahy.

Prezentace tabulky v textu 4. K jaké populaci se výsledek vztahuje (teritorium, časové období, sociální skupina,…) Závislá proměnná, Vysvětlující proměnná/é, Použité míry/ statistiky. Nezapomeňte uvádět datový zdroj a počet validních - platných případů v konkrétní analýze (tabulce). Zejména tehdy pokud počet missingů překročí cca 5%.

Prezentace grafu v textu

Prezentace a interpretace kontingenční tabulky (výzkumná otázka a hypotéza) Výzkumná otázka (RQ): Souvisí počet přečtených knih s dobou sledování TV? Hypotéza sociologická: Počet přečtených knih roste s dobou strávenou s TV. = pozitivní souvislost Nulová hypotéza (H0): Počet přečtených knih se neliší v závislosti na době strávené u TV. = žádný vztah Tabulka 2 ukazuje podíl přečtených knih za rok (rozděleno na tři skupiny čtenářů dle tercilů) ve skupinách podle míry sledování televize v běžný den (rovněž kategorizováno na tercily). V tabulce ověřujeme Hypotézu, podle níž počet přečtených knih roste s dobou strávenou s TV. Zatímco v kategorii podprůměrného množství přečtených knih (I. tercil) je pouze 16 %, těch co televizi sledují málo (I. tercil), tak těch, kdo sledují TV nadprůměrně (III. tercil) je v této kategorii zhruba 2,5 x více (39%). Obdobně v kategorii nejvíce přečtených knih (III. tercil) je 42 % těch, kdo se na televizi v podstatě nedívají a zároveň jen 17% těch, kteří se na ní dívají velmi často (III. tercil). Vidíme tak, že mezi čtením knih a sledováním televize existuje negativní souvislost (vyjádřeno pomocí kontingenčního koeficientu souvislost je tato souvislost středně silná, CC = 0,25). Naší hypotézu o pozitivní souvislosti mezi počtem přečtených knih a sledováním TV nám tedy nezbývá než zamítnout, vztah je přesně obrácený: čím více studenti čtou, tím méně se dívají na televizi.