Subcelulární kompartmenty

Slides:



Advertisements
Podobné prezentace
Citrátový cyklus a Dýchací řetězec
Advertisements

Úvod do histologie a embryologie Maňáková Histologie je věda zabývající stavbou a složením buněk a tkání: a) CYTOLOGIE (stavba buněk)‏ b) HISTOLOGIE.
Vnitrobuněčné oddíly Třídění a transport proteinů.
BIOLOGIE 1 Rostliny Biologické vědy Metody práce v biologii
Biochemie thyroidních hormonů
RISKUJ ! Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým.
Metabolismus A. Navigace B. Terminologie E. Sacharidy I. Enzymy
Metabolismus A. Navigace B. Terminologie E. Sacharidy I. Enzymy
STRUKTURA BUŇKY.
Složení živých soustav
Buňka Milada Roštejnská Helena Klímová Obr. 1. Různé typy buněk
EUKARYOTA.
Organické a anorganické sloučeniny lidského těla
Chemická stavba buněk Září 2009.
Metabolismus A. Navigace B. Terminologie E. Sacharidy I. Enzymy
Membrána. Nutnost oddělit se od vnějšího prostředí a kompartmentalizovat vnitřek pro různé biochemické a informační děje Membrány.
EUKARYOTICKÁ BUŇKA Velikost – v mikrometrech (10–100, i větší)
Biologie E
Výuková centra Projekt č. CZ.1.07/1.1.03/
Základy přírodních věd
Biofyzika buňky, biomembrány
Eukaryota – buněčná stavba
Nutný úvod do histologie
Biologické membrány, kompartmentalizace metabolických drah
Eukaryotická buňka.
Srovnání prokaryotických a eukaryotických buněk
AV ČR, Mendelovo muzeum a Vereinigung zur Förderung der Genomforschung pořádají další ročník Mendel Lectures které se konají v Agustiniánském.
DÝCHÁNÍ = RESPIRACE.
Buňka - cellula Olga Bürgerová.
Fotosyntésa.
DÝCHACÍ ŘETĚZEC.
Dýchací řetězec a oxidativní fosforylace
Metabolismus lipidů.
Buňka - test Milada Roštejnská Helena Klímová Obr. 1. Různé typy buněk
Středn í zdravotnick á š kola, N á rodn í svobody P í sek, př í spěvkov á organizace Registračn í č í slo projektu: CZ.1.07/1.5.00/ Č.
VY_32_INOVACE_03-01 Živočišná buňka
(Citrátový cyklus, Cyklus kyseliny citrónové)
Membrány a membránový transport
TESTTEST Úvod do bakteriologie Biologie buňky 25. října 2006 Kvinta B.
Cyklus kyseliny citrónové, citrátový cyklus.
Bioenergetika Pro fungování buněčného metabolismu nutný stálý přísun energie Získávání, přenos, skladování, využití energie Na co se energie spotřebovává.
Citrátový cyklus a dýchací řetězec
Energetický metabolismus
MITOCHONDRIÁLNÍ TRANSPORTNÍ SYSTÉMY
BUNĚČNÁ STAVBA ŽIVÝCH ORGANISMŮ
Semiautonomní organely a cytoskelet
Stavba lidského těla.
MORFOLOGIE ŽIVOČIŠNÝCH BUNĚK
Genetických pojmů EU peníze středním školám Název vzdělávacího materiálu: Eukaryotická buňka I. Číslo vzdělávacího materiálu: ICT5/2 Šablona: III/2 Inovace.
Zlepšování podmínek pro výuku technických oborů a řemesel Švehlovy střední školy polytechnické Prostějov registrační číslo : CZ.1.07/1.1.26/
Zlepšování podmínek pro výuku technických oborů a řemesel Švehlovy střední školy polytechnické Prostějov registrační číslo CZ.1.07/1.1.26/
eukaryotická buňka plasmatická membrána cytoplasma a, cytosol
Porovnání eukaryotické a prokaryotické buňky
FYZIOLOGIE ČLOVĚKA Tělesná výchova a sport - kombinované studium -
Buňka  organismy Látkové složení.
Nukleové kyseliny Charakteristika: biopolymery
Číslo projektu CZ.1.07/1.5.00/ Číslo materiálu
Živočišná Buňka.
VY_52_INOVACE_24_Buňka rostlinná a živočišná
(Citrátový cyklus, Cyklus kyseliny citrónové)
Kompartmentace metabolických dějů v buňce
BIOCHEMICKÁ ENERGETIKA
Sacharidy Lipidy Bílkoviny Nukleové kyseliny Buňka
Bi1BK_ZNP2 Živá a neživá příroda II Buněčná stavba živých organismů
A B C c d b a e g h i f 1.1 Různé typy buněk
Buňka Test.
Prokaryotická buňka.
eukaryotická buňka plasmatická membrána cytoplasma a, cytosol
Stavba buňky.
Stavba buňky Mitochondrie Plazmatická membrána Ribozomy
Transkript prezentace:

Subcelulární kompartmenty Kompartment značí “subcelulární region s biochemickými reakcemi kineticky isolovanými od ostatních buněčných pochodů” Friedrich, P. 1985 Dynamic Compartmentation in Soluble Multienzyme System Richard Vytášek 2010

Výhody kompartmentace Udržování vysoké lokální koncentrace komponent v kompartmentu, které by jinak difundovaly pryč – koncentrovanější substráty mohou reagovat rychleji a účinněji Kontrola transportu intermediátů mezi kompartmenty je další účinný regulační system metabolických drah, které se odehrávají ve více kompartmentech Ochrana před působením nepříznivých sil okolního prostředí

Kompartmenty eukaryotické buňky Jádro (nukleus) Jadérko (nuleolus) Golgiho aparát Mitochondrie Lysosomy Peroxisomy Cytoskeleton Cytosol Centrioly Plasmatická membrána Endoplasmatické retikulum

Plasmatická membrána Plasmatická membrána (nazývaná také buněčná membrána nebo plasmalemma) je biologická membrána oddělující vnitřek buňky od okolního prostředí. Buněčná membrána je povrchem všech buněk a je selektivně-permeabilní. Takto je řízen pohyb substancí jak do buňky , tak ven z ní. Je složena primárně z lipidů (fosfolipidů, glykolipidů a cholesterol esterů) a bílkovin, které se zůčastní celé řady buněčných procesů jako je např. adheze buněk, transport iontovými kanály a buněčná signalisace. Vnitřní strana buněčné membrány obsahuje specifická místa, na které je uchyceny komponenty intracelulárního cytoskeletonu.

Membránové lipidy

Buněčná membrána se skládá primárně ze specificky uspořádané fosfolipidové dvojvrstvy. Její uspořádání zabraňuje volné difusi polárních látek přes membránu, ale pasivní difuse hydrofobních molekul přes membránu je obecně možná.

Transport přes plasmatickou membránu Plasmatická membrána je selektivně permeabilní a většina hydrofobních molekul může pasivně difundovat přes lipidickou dvouvrstvu membrány Jsou tři způsoby transportu polárních molekul : Difuse - the pasivmí pohyb molekul dle koncentračního gradientu dokud není dosaženo rovnováhy Usnadněná difuse - Aktivní transport -

Mitochondria Dvě membrány – vnitřní(inner) a vnější (outer) se velmi liší funkcí i enzymovou aktivitou Matrix mitochondrie (mitosol) také vykazuje odlišné biochemické funkce Většina mitochondriálních proteinů je kodována jadernou DNA (a syntetizována na volných ribosomech v cytosolu) ,ale 13 mitochondriálních proteinů a některé RNA jsou kodovány kruhovou mitochondriální DNA (mtDNA) Symbiosa asi začala někdy před 3 000 000 000 let Outer m – porins Inner membrane – transmembrane translocation systems

Biochemické funkce mitochondrií Synthesa více než 90% ATP – oxidativní fosforylace (vnitřní membrána) Produkce tepla (rozpojení oxidace a fosforylace) Apoptosa (programovaná smrt) – vnitřní mitochondriální dráha Oxidativní dekarboxylace pyruvátu (pyruvate dehydrogenase complex) ß-oxidation mastných kyselin (kratší než 24-C) Cyklus kyseliny citronové (Krebsův cykl) - mitosol P450 - vnitřní membrána

Transport elektronů z cytosolického NADH do mitochondrie Michael W. King, Ph.D / IU School of Medicine / miking at iupui.edu

Dráha transportu acetyl-CoA z mitochondrie do cytoplasmy pro biosyntézu lipidů a cholesterolu Michael W. King, Ph.D / IU School of Medicine / miking at iupui.edu

Karnithinový člunek(shuttle) a mitochondriální oxidace mastných kyselin

Endoplasmatické retikulum Proteosynthesa (rough ER = RER) Počáteční stadium synthesy polysacharidového řetězce N-vázaných glykoproteinů (RER) Synthesa (smooth ER = SER) - fosfolipidy , triglyceridy Synthesa cholesterolu a steroidů(SER) Hydroxylace endogenních a exogenních sloučenin cytochromy P450 (SER) Skladování vápníkových ion (SER , sarcoplasmatické retikulum)

Golgiho komplex Spolupracuje s endoplasmatickým retikulem Enzymatické postranslationční modifikace bílkovin (glykosylace, sulfatace) Synthesa of nové plasmatické membrány a participace na tvorbě primárních lysosomů a peroxisomů

Lysosomy Zodpovídají za intracelulární digesce jak intracelulárních, tak extracelulárních látek Lysosomální enzymy jsou hydrolasy s maximální aktivitou při pH 5 (vnitřek lysosomů) Hydrolysa intracelulární materiál – proteiny, nukleové kyseliny, lipidy stejně jako organely – autofagie Extracelulární material je hydrolysován po transportu do buňky endocytosou (pinocytosa and phagocytosa) - heterofagie

Lysosomy a digesce Substance je/jsou v membránou uzavřeném vesikulu Fuzí vesikulu s primárním lysosomem vzniká sekundární lysosom (trávící vakuola) Lysosomální hydrolasy štěpí obsah sekundárních lysosomů Nízkomolekulární složky hydrolysátu přecházejí do cytosolu pro opětovné využití Nerozštěpitelný materiál se akumuluje v residuálních tělíscích (resifual body) a je odstraněn z buňky exocytosou Zbylé (nonexocytované) residualní tělíska obsahují lipofuscin („age pigment“)

Peroxisomy Produkují nebo využívají peroxid vodíku Liší se funkcí i počtem v jednotlivých typech buněk Známo více jak 50 enzymů katalyzujících oxidační a biosynthetické reakce oxidace velmi dlouhých řetězců mastných kyselin (a- i b-oxidace) synthesa glycerolipidů, glycerol ether lipidů (plasmalogeny) a isoprenoidy enzymy pro oxidaci of D-aminokyselin, 2-hydroxy kyselin a močové kyseliny (uricase absentuje u vyšších primátů) katalasa Známo více jak 25 poruch biogenese peroxisomů (Zellweger‘s syndrome = absence of peroxisomes and death occurs by age 6 months) Některá xenobiotika indukují proliferaci peroxisomů

Plasmalogens biosynthesis from DHAP in peroxisomes

Cytoskelet Udržuje fenotyp (morfologii) buněk a podílí se na intracelulárním transportu, buněčné motilitě a buněčném dělení Obsahuje mikrotubuly, intermediární filamenta a aktinová filamenta (mikrofilamenta)

Cytoskelet - mikrotubuly průměr 25 nm a délka od 200 nm do 25 mm polymery α- and β-tubulinových dimerů, které polymerizují kones ku konci do protofilament. Protofilamenta se pak splétají do dutých válcovitých útvarů - mikrotubulů

Cytoskelet - intermediární filamenty Typický průměr intemediárních (středních) filament (IF) je 10 nm Doménová struktura IF molekul je konservovaná. Každý protein má non-a-helix doménu na N a C-konci, které rámují a-helix doménu vlastní „tyčinky“ Základní jednotka intemediárních filament (IF) je dimer Popsáno více jak 70 genů pro šest základních typů (I - VI) IF : I a II - keratiny (epithelialní a vlasové) III – např. desmin (sarcomery svalových buněk) a vimentin (e.g. fibroblasty - podpora správné lokalisace organel V - jaderné IF

Cytoskelet - mikrofilamenta nejdymamičtější část cytoskeletonu is jsou mikrofilamenta (actin filamenta). průměr mikrofilament je pouze 6nm jsou tvořeny lineárními polymery aktinových podjednotek

Centrosom a centrioly Centrosom je organela, jež je hlavním organisačním centrem mikrotubulů a je regulátorem průběhu buněčného cyklu Centrosom je ta oblast buňky, ve které jsou formovány microtubuly Centrioly jsoudůležitou částí centrosomu. Jejich „barrelovitá“ struktura (9 tripletů) se nalézá ve většině živočišných buněk

Cytosol 54% objemu buňky četné reakce jsou prováděny jen v určitých oblastech cytosolu glykolysa (NAD+/ NADH) PPP - pentosofosfátová dráha (NADPH) glykogenolysa glykogenese (synthesa glykogenu) biosynthesa mastných kyselin(fatty acid synthase) synthesa aktivních cukrů podpora proteosynthesy poskytnutím intermediátů

Příklady metabolických drah lokalisovaných v jednom kompartmentu Cyklus kyseliny citronové Glykolysa Proteosynthesa DNA replikace

Glukoneogenese Většina enzymů využívaných pro gluconeogenesi se nalézá v cytoplasmě Pyruvát karboxylasa je ale mitochondriální enzym a takto vzniklý oxalacetát je redukován na malát a transportován do cytosolu Rychlost gluconeogenese je hlavně určena působením klíčového enzymu, fruktosa-1,6-bisfosfatasy, která je také regulována cAMP a fosforylací.

Buněčná ß-oxidace mastných kyselin a různé role mitochondrií a peroxisomů v tomto procesu alfa-oxidation : formyl-CoA

Biosyntéza cholesterolu syntéza po HMG-CoA v cytosolu další syntéza probíhá v endoplasmatickém retikulu

Močovinový cyklus Je příkladem metabolické dráhy, která probíhá v cytosolu a v matrix mitochondrií a slouží k odstraňování toxického amoniaku. Vzniklá močovina je vyloučena močí. Pouze enzym ornithin transkarbamoylasa je v mitosolu Karbamoylfosfát je syntetizován v mitochondriích z bikarbonátu a amoniaku při spotřebě 2 ATP