Pokročilé architektury počítačů (PAP_03.ppt) Karel Vlček, katedra Informatiky, FEI VŠB Technická Univerzita Ostrava.

Slides:



Advertisements
Podobné prezentace
HRADLOVÁ POLE REKONFIGUROVATELNÁ ZA PROVOZU ZAŘÍZENÍ Soběslav Valach Ústav automatizace a měřicí techniky, FEKT, VUT Brno, Czech Republic.
Advertisements

Mikroprocesory Intel Obr. 1.
Mikroprocesory Procesory. Procesor je synchronní zařízení provádí operace s daty je programovatelný pomocí mikroinstrukcí je více rodin procesorů (jednočipy.
Komunikace periférii.
Otázky k absolutoriu HW 1 - 5
Procesory Filip Skulník.
Principy překladačů Mezikód Jakub Yaghob.
Úvod. Základní úrovně: hardwarová (procesory, jádra) programová (procesy, vlákna) algoritmická (uf... ) Motivace: zvýšení výkonu redundance jiné cíle,
Principy překladačů Architektury procesorů Jakub Yaghob.
Instrukční soubor PIC16Fxxx osnova: Charakteristika instrukčního souboru Rozdělení instrukcí Časové průběhy (zpracování instrukcí)
Diagnostika počítačů DGP_10 Prof. Ing. Karel Vlček, CSc. Katedra Informatiky, FEI, VŠB - TUO.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUM VY_32_INOVACE_02A13 Autor Ing. Jiří Kalousek Období vytvoření duben 2014.
Pokročilé architektury počítačů (PAP_01.ppt)
PicoBlaze, MicroBlaze, PowerPC
Základy mikroprocesorové techniky
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Paměťové obvody a vývoj mikroprocesoru
Pokročilé architektury počítačů (PAP_14.ppt) Karel Vlček, katedra Informatiky, FEI VŠB Technická Univerzita Ostrava.
Tato prezentace byla vytvořena
Pokročilé architektury počítačů (PAP_02.ppt) Karel Vlček, katedra Informatiky, FEI VŠB Technická Univerzita Ostrava.
Výrok „Počítač je pouze tak inteligentní jako jeho uživatel.“ (Radek Lochman, dnes)
Informatika pro ekonomy II přednáška 10
Operační systém (OS) ICT Informační a komunikační technologie.
Procesory.
Pokročilé architektury počítačů (PAP_10.ppt) Karel Vlček, katedra Informatiky, FEI VŠB Technická Univerzita Ostrava.
Pokročilé architektury počítačů (PAP_02.ppt) Karel Vlček, katedra Informatiky, FEI VŠB Technická Univerzita Ostrava.
Pokročilé architektury počítačů (PAP_12.ppt) Karel Vlček, katedra Informatiky, FEI VŠB Technická Univerzita Ostrava.
Pokročilé architektury počítačů (PAP_04.ppt) Karel Vlček, katedra Informatiky, FEI VŠB Technická Univerzita Ostrava.
Pokročilé architektury počítačů (PAP_06.ppt) Karel Vlček, katedra Informatiky, FEI VŠB Technická Univerzita Ostrava.
Začátky mikroprocesorů
Autor:Jiří Gregor Předmět/vzdělávací oblast: Digitální technika Tematická oblast:Digitální technika Téma:Statické paměti RWM – RAM 1. část Ročník:3. Datum.
CZ.1.07/1.4.00/ VY_32_INOVACE_152_IT7 Výukový materiál zpracovaný v rámci projektu Vzdělávací oblast: Informační a komunikační technologie Předmět:Informatika.
Pokročilé architektury počítačů (PAP_09.ppt) Karel Vlček, katedra Informatiky, FEI VŠB Technická Univerzita Ostrava.
Marek Malík a František Černý, ME4A, 2012
Obchodní akademie a Střední odborná škola, gen. F. Fajtla, Louny, p.o. Osvoboditelů 380, Louny Číslo projektu CZ.1.07/1.5.00/ Číslo sady 28Číslo.
Výrok „Vypadá to, že jsme narazili na hranici toho, čeho je možné dosáhnout s počítačovými technologiemi. Člověk by si ale měl dávat pozor na takováto.
Pokročilé architektury počítačů (PAP_06.ppt) Karel Vlček, katedra Informatiky, FEI VŠB Technická Univerzita Ostrava.
Mikroprocesor.
Pokročilé architektury počítačů (PAP_16.ppt) Karel Vlček, katedra Informatiky, FEI VŠB Technická Univerzita Ostrava.
Pokročilé architektury počítačů (PAP_04.ppt)
Pokročilé architektury počítačů (PAP_05.ppt)
Pokročilé architektury počítačů (PAP_08.ppt) Karel Vlček, katedra Informatiky, FEI VŠB Technická Univerzita Ostrava.
Pokročilé architektury počítačů (PAP_11.ppt) Karel Vlček, katedra Informatiky, FEI VŠB Technická Univerzita Ostrava.
Počítač univerzální stroj na automatické zpracování informace programovatelný - program určuje využití (univerzalita) program - skupina příkazů, kterým.
XSLT překladač Marek Běhálek Informatika a aplikovaná matematika FEI VŠB-TU Ostrava.
Pokročilé architektury počítačů (PAP_03.ppt) Karel Vlček, katedra Informatiky, FEI VŠB Technická Univerzita Ostrava.
Procesory.
Instrukce procesoru.
Digitální signálový procesor (DSP) Digitální signálový kontrolér (DSC) Blokové schéma mikroprocesroru.
Číslo projektu CZ.1.07/1.5.00/ Název školy Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64 Název materiálu VY_32_INOVACE_IVT_1_KOT_04_PROCESOR.
Multiprocesorové systémy. Multiprocesorové systémy vznikly z důvodu zvýšení výkonnosti počítačů, protože jednoprocesorové systémy svým výkonem již přestaly.
Technika počítačů 3. Mikroprocesory © Milan Keršlágerhttp:// Obsah: ●
Orbis pictus 21. století Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Blokové schéma počítače.
John von Neumannova koncepce. John von Neumann  Narozen 28. prosince 1903 Budapešť Rakousko-Uhersko  Zemřel 8. února 1957 Spojené státy americké.
Překladače Optimalizace © Milan Keršláger
Rozdělení počítačů. Počítače rozdělujeme podle mnoha kritérií z nichž některé dále probereme. Nejčastější rozdělení je na počítače typu :  CISC (Complex.
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, Karlovy Vary Autor: Ing. Hana Šmídová Název materiálu: VY_32_INOVACE_10_NEUMANN_S1.
ZŠ Brno, Řehořova 3 S počítačem snadno a rychle Informatika 7. ročník III
Vývoj architektur mikroprocesorů Od 4 bitů k superskalárnímu RISC Vývoj architektur mikroprocesorů Od 4 bitů k superskalárnímu RISC Pavel Píša
Výukový materiál zpracován v rámci projektu
ALU Aritmeticko-logická jednotka
Aritmetickologická jednotka
Výukový materiál zpracován v rámci projektu
Jednočipové počítače – instrukční sada
1. ročník oboru Mechanik opravář motorových vozidel
Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/
Informatika pro ekonomy přednáška 8
Centrální procesorová jednotka
1. ročník oboru Mechanik opravář motorových vozidel
Intel Pentium (1) 32-bitová vnitřní architektura s 64-bitovou datovou sběrnicí Superskalární procesor: obsahuje více než jednu (dvě) frontu pro zřetěze-né.
Transkript prezentace:

Pokročilé architektury počítačů (PAP_03.ppt) Karel Vlček, katedra Informatiky, FEI VŠB Technická Univerzita Ostrava

Karel VlčekPokročilé architektury procesorů 2 Procesory s velmi dlouhým instrukčním slovem (VLIW) VLIW (Very Long Instruction Word) jsou podtřídou superskalárních procesorů Motivací pro toto řešení architektury je zvýšení výkonnosti na úrovni instrukcí ILP (Instruction Level Parallelism) Odpovědnost za výběr instrukcí, které mají být provedeny současně, je pouze na kompilátoru

Karel VlčekPokročilé architektury procesorů 3 Procesory VLIW (1) Vznik procesorů VLIW byl vyvolán složitostí procesu pro vydáváním instrukcí superskalárních procesorů Rostlo zejména zapojení hardware, který byl nutný pro řešení datových závislostí a pro dekódování instrukcí Část dynamicky řešených optimalizací vydávání instrukcí bylo řešitelných statickou koncepcí zavedením VLIW

Karel VlčekPokročilé architektury procesorů 4 Procesory VLIW (2) Procesory VLIW jsou charakteristické tím, že mají velmi dlouhé instrukční slovo To je způsobeno nahrazením instrukčního slova (kódu) částečně dekódovaným instrukčním slovem Instrukční kód představuje dekódovaný instrukční kód, ale rovněž jeden nebo oba operandy

Karel VlčekPokročilé architektury procesorů 5 Procesory VLIW (3) Procesory VLIW přinášejí jak výhody, tak i nevýhody: Hlavní výhodou je úspora hardware při dekódování instrukcí Další výhodou je to, že nemusí být hlídáno, jak mají být vydávány instrukce, aby se dosáhlo co největšího výkonu Více hardware než dříve tak může být použito na samotné výpočty

Karel VlčekPokročilé architektury procesorů 6 Procesory VLIW (4) - nevýhody Mezi nevýhody procesorů s architekturou VLIW patří obtížnější vytváření překladačů Programy jsou větší a rozsáhlejší, v instrukcích nejsou plně využity všechny části instrukčního slova Při dekódování není možné stanovit délku registrů, což nese nebezpečí WAW hazardů

Karel VlčekPokročilé architektury procesorů 7 Procesory VLIW (5) - nevýhody Překladače by měly respektovat hloubku zřetězení – jak mnoho výkonných jednotek bude v činnosti Aby mohlo být dosaženo optimálního výkonu, musel by překlad probíhat pro data se známými délkami operandů Výkon je rovněž ovlivňován typem algoritmů to vede k tomu, že VLIW procesory jsou specializovány na určité úlohy

Karel VlčekPokročilé architektury procesorů 8 VLIW procesor Intel IA-64 Itanium Procesor Intel IA-64 Itanium a rovněž jeho obdoba (AMD) má 32-bitovou architekturu 512Mbyte paměti cash, které mohou být i nižší, kvůli ekonomice výroby čipů, například 128/256Mbyte Nově jsou vyráběny se zpracováním slov se 64-bitovou architekturou Signálové procesory fy Texas Instruments a další

Karel VlčekPokročilé architektury procesorů 9 Plánování instrukcí Superskalární procesory plánují a vydávají instrukce z malé množiny instrukcí za běhu, je plánování a vydávání instrukcí u VLIW procesorů zkoumáno při kompilaci mnohem více instrukcí, někdy i celý program Poprvé byla použita VLIW architektura v roce 1975 u numerických koprocesorů FPS-120B

Karel VlčekPokročilé architektury procesorů 10 Generický procesor VLIW Proti superskalárním procesorům je dekódování u VLIW procesorů velmi jednoduché, proto u nich chybí jednotka dekódování a vydávání instrukcí Potřebné nejsou ani rezervační paměti a jednotky plánování, protože jsou důsledně plněny podmínky datové závislosti Je to posun od složitého hardwarového řešení k použití inteligentního překladače

Karel VlčekPokročilé architektury procesorů 11 Datová závislost u VLIW procesorů Architektura VLIW řeší problém datové závislosti použitím velkého počtu registrů, do nichž jsou ukládány mezikódy vytvářené kompilátorem Kompilátor na základě analýzy latencí a počtu funkčních jednotek plánuje tok dat přes registry tak, aby byly dodrženy všechny pravé datové závislosti

Karel VlčekPokročilé architektury procesorů 12 Spekulativní zpracování instrukcí Zohledňuje se tzv. programové řetězení (software pipelining) Spekulativní zpracování instrukcí existuje i u superskalárních procesorů i u procesorů VLIW Procesory VLIW přitom používají informace z analýzy profilace a plánování kompilátorem Pro skokové instrukce je používána predikce

Karel VlčekPokročilé architektury procesorů 13 Plánování instrukcí kompilátorem Není možné připravovat program ručně Program je připravován kompilací do mezijazyka, po jeho optimalizaci je generován kód pro cílovou architekturu VLIW Metodou vytváření tzv. základních bloků (basic blocks) se program vytváří jako pospojování částí programu, které nemají skoky

Karel VlčekPokročilé architektury procesorů 14 Acyklické plánování a predikce Program v mezijazyce používá operace s registry a operace L/S (Load/Store) Acyklické plánování pracuje se seznamem základních bloků a s tzv. acyklickým grafem Plánování se zarážkami (sentinel scheduling) je technika, která usnadňuje acyklické plánování při spekulativním provádění instrukcí

Karel VlčekPokročilé architektury procesorů 15 Predikační provádění instrukcí Technika tzv. predikačního provádění (predicated execution) instrukcí velmi usnadňuje plánování operací Predikáty (predicates) jsou jednobitové registry, které určují zda budou výsledky propuštěny nebo zahozeny Tato technika vyžaduje odporu v hardware

Karel VlčekPokročilé architektury procesorů 16 Predikace a podmíněné skoky Predikace napomáhá snaze programátora, aby navržený program byl co nejvíce lineární Při použití techniky predikace se výsledný program formátuje do tzv. hyperbloků (hyper-block formation) Instrukce pak mohou být jednoduše přesouvány v rámci hyperbloků

Karel VlčekPokročilé architektury procesorů 17 Cyklické plánování (1) Vysokého paralelismu zpracování se dosahuje u implementace programů smyček pomocí tzv. cyklického plánování Takové seřazení instrukcí se označuje jako programové zřetězení (software pipelining) Naplánování smyčky je možné při předem známém počtu iterací a absencí dalších skoků v těle smyčky

Karel VlčekPokročilé architektury procesorů 18 Cyklické plánování (2) Závislost mezi iteracemi smyčky (loop- carried dependency) se dá odstranit použitím dalších registrů nebo podporou v hardware Podpora v hardware se děje pomocí tzv. rotujících registrů (rotating registers) Programové řetězení není omezeno jen na architekturu VLIW, je možné i pomocí tzv. přejmenování registrů

Karel VlčekPokročilé architektury procesorů 19 Zhodnocení architektury VLIW Důležitý je přínos optimalizujícího kompilátoru, který při analýze vyhodnotí instrukční paralelismus Plánovací algoritmus bere v úvahu latence menší nebo rovné určité hodnotě času Největším přínosem je zvýšení využití ILP (Instruction Level Parallelism) Využívají paralelismu i v nepravidelně strukturovaném programu

Karel VlčekPokročilé architektury procesorů 20 Nové architektury VLIW INTEL IA-64: 128 registrů, 64 predikátů, 8 branch registers, architektura EPIC (Explicitly Parallel Instruction Computing) DSP TMS 320C67x: signálový procesor s pohyblivou řádovou čárkou, adresová aritmetická jednotka, násobička FX i FP, dvě jednotky pro aritmetické a logické operace Multimediální procesory (viz speciální část)

Karel VlčekPokročilé architektury procesorů 21 Vektorové procesory Cílem je zrychlit práci s vektory a maticemi Využití u vědeckotechnických výpočtů zpracovávané smyčkou přes všechny prvky vektorů Jsou obdobou architektury L/S (Load/Store) Typické je zřetězení přístupů do tzv. prokládané paměti (inteleaved memory)

Karel VlčekPokročilé architektury procesorů 22 Základní rysy architektury vektorového procesoru (1) Vektorové instrukce jsou ekvivalentní plně rozvinuté skalární smyčce Prokládaná paměť místo paměti D-cache Soubor registrů u nichž je délka přizpůsobována délce zpracovávaných vektorů Počet načítaných instrukcí je výrazně menší Latence hlavní paměti je pouze na začátku

Karel VlčekPokročilé architektury procesorů 23 Základní rysy architektury vektorového procesoru (2) Výpočet každého prvku je nezávislý na jiných prvcích (nezpůsobuje datové konflikty) Řídicí konflikty nevznikají Vektorové funkční jednotky provádějí aritmetické a logické operace (+, -, x, posuv) Několik vektorových operací může probíhat současně Spolupracují zpravidla se skalárními procesory

Karel VlčekPokročilé architektury procesorů 24 Zpracování vektorových instrukcí Operace mezi dvěma vektory Operace mezi vektorem a skalárem Přesuny mezi registry a pamětí (L/S) Shrnutí nenulových prvků Rozptýlení nenulových prvků Instrukce maskování Redukce jednoho nebo dvou vektorů na skalár

Karel VlčekPokročilé architektury procesorů 25 Doba provádění instrukcí vektorových procesorů Operace zpracovávají jeden operand v každém taktu Konvoje zpracování se nepřekrývají Při datové závislosti se data předávají Počáteční latence: L/S 12 taktů, sčítačka 6 taktů, násobička 7 taktů, dělička 20 taktů Zpracování probíhá postupně „po proužcích“ (strip-mining technique)

Karel VlčekPokročilé architektury procesorů 26 Výkonnost vektorových procesorů Výkonnost procesorů u vektorových výpočtů FP je dána počtem taktů potřebných na výpočet výsledného vektoru délky n: R = lim((FPP*n)/(T(a)*doba_taktu) Skutečná výkonnost je vždy menší než limitní hodnota R

Karel VlčekPokročilé architektury procesorů 27 Literatura: Dvořák, V.: Architektura a programování paralelních systémů, VUTIUM Brno, (2004), ISBN X Dvořák, V., Drábek, V.: Architektura procesorů, VUTIUM Brno, (1999), ISBN Drábek, V.: Výstavba počítačů, PC-DIR, s.r.o. Brno, (1995), ISBN Mueller, S.: Osobní počítač, Computer Press, Praha, (2001), ISBN Pluháček, A.: Projektování logiky počítačů, Vydavatelství ČVUT Praha, (2003), ISBN