Korelace a elaborace aneb úvod do vztahů proměnných

Slides:



Advertisements
Podobné prezentace
Korelace a regrese Karel Zvára 1.
Advertisements

Použité statistické metody
Analýza dotazníků RNDr. Michal Čihák, Ph.D..
Cvičení 6 – 25. října 2010 Heteroskedasticita
SB029 Dodatek k přednáškám Základy analýzy dat a SPSS
Lineární regresní analýza Úvod od problému
Úvod do regresní analýzy
Regresní analýza a korelační analýza
ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN
Testování hypotéz (ordinální data)
Korelace a regrese síla (těsnost) závislosti dvou náhodných veličin: korelace symetrický vztah obou veličin neslouží k předpovědi způsob (tvar) závislosti.
Řízení a supervize v sociálních a zdravotnických organizacích
Inference jako statistický proces 1
Základy ekonometrie Cvičení 3 4. října 2010.
Lineární regrese.
Testy významnosti Karel Mach. Princip (podstata): Potvrzení H O Vyvrácení H O →přijmutí H 1 (H A ) Ptáme se:  1.) Pochází zkoumaný výběr (jeho x, s 2.
Biostatistika 5. přednáška Aneta Hybšová
Lineární regresní model Statistická inference Tomáš Cahlík 4. týden.
Korelace a elaborace aneb úvod do vztahů proměnných
Korelace a elaborace aneb úvod do vztahů proměnných
Lineární regrese.
REGIONÁLNÍ ANALÝZA Cvičení 3 Evropský sociální fond
Lineární regresní analýza
Biostatistika 6. přednáška
Další spojitá rozdělení pravděpodobnosti
Biostatistika 7. přednáška
Kontingenční tabulky.
Ekonometrie „ … ekonometrie je kvantitativní ekonomická disciplína, která se zabývá především měřením v ekonomice na základě analýzy reálných statistických.
Pohled z ptačí perspektivy
Fitování Konstrukce křivky (funkce), která co nejlépe odpovídá naměřeným hodnotám. - může podléhat dodatečným podmínkám Lineární vs. nelineární regrese.
Teorie psychodiagnostiky a psychometrie
REGIONÁLNÍ ANALÝZA Cvičení 4 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Název projektu: Kvalitní vzdělání je efektivní investice.
Jiří Šafr jiri.safr(AT)seznam.cz Poslední aktualizace 11/3/2014
2. Vybrané základní pojmy matematické statistiky
Praktikum elementární analýzy dat Třídění 2. a 3. stupně UK FHS Řízení a supervize (LS 2012) Jiří Šafr jiri.safr(zavináč)seznam.cz poslední aktualizace.
8. Kontingenční tabulky a χ2 test
Pearsonův test dobré shody chí kvadrát
Biostatistika 8. přednáška
Korelace.
Biostatistika 1. přednáška Aneta Hybšová
PSY717 – statistická analýza dat
Třídění 2. a 3. stupně: orientační mapa možností bivariátních analýz
Korelace. Určuje míru lineární vazby mezi proměnnými. r < 0
Aplikovaná statistika 2. Veronika Svobodová
1. cvičení
IV..
Aplikovaná statistika 2.
Měření v sociálních vědách „Měřit všechno, co je měřitelné, a snažit se učitnit měřitelným vše, co dosud měřitelné není“. (Galileo Galilei)
Testování hypotéz Testování hypotéz o rozdílu průměrů  t-test pro nezávislé výběry  t-test pro závislé výběry.
Základy zpracování geologických dat R. Čopjaková.
… jsou bohatší lidé šťastnější?
Korelace. Určuje míru lineární vazby mezi proměnnými. r < 0
INDUKTIVNÍ STATISTIKA
Korelace Korelace obecně je míra kvality (vhodnosti, těsnosti) nalezeného regresního modelu pro daná data; vychází z hodnot reziduí V každém typu regresního.
Opakování – přehled metod
Statistické testování – základní pojmy
Prostorová analýza voleb POL 509
- váhy jednotlivých studií
Regresní analýza výsledkem regresní analýzy je matematický model vztahu mezi dvěma nebo více proměnnými snažíme se z jedné proměnné nebo lineární kombinace.
Hodnocení závislosti STAT metody pro posouzení závislosti – jiné pro:
Parciální korelace Regresní analýza
Metodologie pro ISK 2 Úvod do práce s daty
Korelace a elaborace aneb úvod do vztahů proměnných
Úvod do induktivní statistiky
Metodologie pro ISK 2 Kontrola dat Popis kategorizovaných dat
T-testy, neparametrické metody a analýza rozptylu (lekce 5-6)
Lineární regrese.
7. Kontingenční tabulky a χ2 test
Třídění 2. a 3. stupně: orientační mapa možností bivariátních analýz
Základy statistiky.
Transkript prezentace:

Korelace a elaborace aneb úvod do vztahů proměnných

Závislost dvou proměnných-přehled Nominální (kontingenční koeficienty, koeficienty asociace) Ordinální (Korelační koeficienty dle Spearmana a Kendalla) Kardinální (Pearsonův párový korelační koeficient, párová regrese)

Začněme opakováním aneb 4 typy závislosti 2 kardinálních proměnných Silná pozitivní závislost Slabá pozitivní závislost Silná negativní závislost Nulová závislost Dopad na korelační koeficient a regresní koeficient Upozornění-lineární regrese i korelace měří jen lineární vztahy

4 typy lineární závislosti 2 kardinálních proměnných Silná pozitivní závislost r = 0,97

4 typy lineární závislosti 2 kardinálních proměnných Silná negativní závislost r = - 0,97

4 typy lineární závislosti 2 kardinálních proměnných Slabá pozitivní závislost r = 0,35

4 typy lineární závislosti 2 kardinálních proměnných Nulová závislost r = 0

!!!Korelace předpoklady!!! Předpoklad pro Pearsonův koeficient normalita proměnných viz např procedura Explore v Analyze-Descriptives (tedy pro korelace chceme náhodný výběr z normálního rozdělení/regrese naopak předpokládá volbu kombinace vysvětlujících proměnných) Předpoklad pro Spearmanův/Kendallův koeficient ordinalita proměnných

Korelace v SPSS Analyze-Correlate-Bivariate Výběr tří základních koeficientů Options-popisná statistika a kovariance a součin směrodatných odchylek Volba práce s chybějícími hodnotami (viz i další metody)

Korelace v SPSS Jedno (one-tailed) a dvoustranný test (two-tailed) aneb různé alternativní hypotézy Co je za tím? Flag significant correlations. Korelační koeficienty významné na 5% (0,05) hladině významnosti označeny jednou hvězdičkou resp. pro 1% dvěmi

Korelace v SPSS-syntax Všechny proměnné se všemi CORRELATIONS /VARIABLES=q9 q10 q53 /PRINT=TWOTAIL NOSIG /MISSING=PAIRWISE. Jedna proměnná (q53) se všemi /VARIABLES=q53 with q9 q10

Poučky o korelačních koeficientech Koeficienty pro pořadové proměnné i pro proměnné intervalové měří lineární vztah. Vychází-li korelace nízká, znamená to pouze, že vztah mezi proměnnými nemá lineární povahu. Možná je souvislost mezi znaky velmi těsná, ale má jinou než lineární podobu. Co s tím udělat? Použijte koeficientu pro nominální znaky, např. Cramerova V. Pokud vyjde vyšší než ten, který jste použili původně, je to indikace nelinearity. Použijte k analýze grafu nebo tabulky, abyste zjistili, v kterých kategoriích dochází k odchylce od linearity.

Poučky o korelačních koeficientech V případě, že počítáte příliš mnoho korelací mezi navzájem provázanými proměnnými, vychází zpravidla všechny korelační koeficienty jako významné. V duchu vícenásobných porovnání (používaných například v analýze rozptylu) se doporučuje snížit konvenční hladinu významnosti (0,05) tolikrát kolik počítáme párových korelačních koeficientů (dle autora této metody se nazývá Bonferonniho korekce) . Tímto postupem zajistíme, že celková hladina významnosti všech párových srovnání bude maximálně rovna konvenční hladině významnosti (0,05). Stejného výsledku lze dosáhnout i tak, že jednotlivé Sig. vypočtené v SPSS vynásobíme počtem párových srovnání a porovnáváme je s konvenční hladinou významnosti 0,05.

Poučky o velikosti koeficientů Hodnota korelace v abs. hodnotě interpretace souvislosti 0,01 – 0,09 triviální, žádná 0,10 – 0,29 nízká až střední 0,30 – 0,49 střední až podstatná 0,50 0,69 podstatná až velmi silná 0,70 0,89 velmi silná 0,90 – 0,99 téměř perfektní De Vaus: 2002

Poznámky závěrem Jiné/další koeficienty-viz Analyze-Descriptives-Crosstabs (tam jsou i kontingenční koeficienty) Vždy než začneme počítat zobrazme si grafy zobrazující závislost proměnných, to nám může ušetřit mnohá překvapení či pochybení

Jak odhalit vliv třetí proměnné (Elaborace a dílčí korelace)

Otázky, které je třeba si položit při odhalení párového vztahu (de Vaus 2002): Jaká je povaha tohoto vztahu, je kauzální nebo ne? Pokud je tento vztah kauzální, je přímý, nebo nepřímý (to je když X ovlivňuje Y prostřednictvím třetí proměnné)? Pokud je tento vztah nepřímý, jakým mechanismem proměnná X ovlivňuje proměnnou Y? Pokud je vztah mezi X a Y nekauzální povahy, jakou funkcí se dá modelovat?

Elaborace Způsob jak odhalit vliv třetí proměnné rozpracovali už v roce 1950 Patricia Kendall s Paulem Lazarsfeldem. Technika byla nazvána elaboration, což lze překládat jak rozpracování, precizace nebo elaborace. Definice tohoto způsobu analýzy by mohla znít: Elaborační analýza obsahuje zavedení třetí proměnné do vztahu mezi dvěma proměnnými a zhodnocení jejího působení. Tím umožňuje hlubší porozumění původnímu párovému vztahu.

Elaborace se obvykle provádí prostřednictvím dvou postupů: Zavedením třetí, testové proměnné do třídění druhého stupně – jinými slovy vytvořením podmíněných tabulek a výpočtem podmíněných korelací. Výpočtem parciálních tabulek a parciálních korelací.

Modely vztahů mezi třemi proměnnými Mezi X a Y je zdánlivý (nepravý) vztah (spurious) X Y Z Příklad: Nepravý vztah je takový, kdy nalezený domněle kauzální vztah, takovýmto vztahem vůbec není. Vztah mezi X a Y se jeví jako existující, avšak je nalezen pouze proto, že jak X, tak Y jsou ovlivňovány existencí a působením proměnné Z. Např. Byl nalezen vztah mezi počtem dětí a výskytem čápů. Tento vztah je způsoben tím, že čápi se nalézají na venkově a na venkově (proměnná Z) se rodí více dětí.

Dílčí korelace v SPSS Analyze-Correlate-Partial Pouze Pearsonův koeficient Options-popisná statistika a párové korelace (nultého řádu) Ostatní jako u Bivariate

Poučky o dílčích korelacích a) Nastane situace, že vypočtený parciální koeficient má přibližně stejnou hodnotu, jako původní korelace. Co to znamená? Testová proměnná nemá na původní vztah vliv a my si můžeme být jisti, že původní korelace není zdánlivá. b) Parciální koeficient je výrazně nižší než původní korelace a je blízký nule. V takovém případě to znamená, že testová proměnná plně vysvětluje původní vztah, který byl zdánlivý. (resp. zdánlivá korelace či intervenující proměnná ) c) Parciální koeficient se změní jenom částečně. Pak je testová proměnná jen částečně vhodná k vysvětlení původní korelace.

Poznámka závěrem k dílčí korelaci Jak se snažila ukázat tato lekce, při hledání statistických vztahů bychom se neměli spokojit pouze s párovám (bivariate) výsledkem. Vždy, když to má smysl, se pokoušejte zavádět třetí proměnné a zjišťujte, zdali původní vztah „vydržel“, nebo byl modifikován. Prohloubíte tím své poznání a přinesete výsledky, které budou postaveny na solidním základě.