Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Nerovnice Ekvivalentní úpravy - 2.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Rovnice je zápis rovnosti dvou výrazů, ve kterém máme najít neznámé číslo (neznámou) tak, aby po jeho dosazení za proměnnou daná rovnost platila. Existuje-li takové číslo, nazývá se řešení nebo také kořen rovnice. Zopakujme si nejdříve, čemu říkáme rovnice. 6 Pravá strana rovnice P x + 2 Levá strana rovnice L = = = Nyní se tedy naskýtá otázka. Jaké číslo můžeme dosadit do našeho příkladu za proměnnou, aby nastala rovnost? Řešením je tedy číslo. Zdá se to být jednoduché, že? Ovšem my už víme, že rovnice nejsou vždy tak jednoduché a že u složitějších rovnic a při jejich řešení nám musí pomoci ekvivalentní úpravy. 6 = 6 Zapíšeme: x = 4 4 4
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. 5 Nerovnice je zápis nerovnosti dvou výrazů, ve kterém máme najít všechna čísla dané množiny (neznámé), po jejichž dosazení za proměnnou bude daná nerovnost platit. A nyní tedy, co je to nerovnice. 6 Pravá strana nerovnice P x + 2 Levá strana nerovnice L > > > Nyní se tedy naskýtá otázka. Jaké číslo můžeme dosadit do našeho příkladu za proměnnou, aby vzniklá nerovnost platila? Řešením může být tedy číslo. Je to jediné číslo, které můžeme dosadit? 7 > 6 5 Samozřejmě, že ne. Takových čísel, která můžeme dosadit za proměnnou, aby vzniklá nerovnost platila, je mnoho, lépe řečeno nekonečně mnoho. Říkáme, že jde o množinu čísel, množinu řešení. Místo znaménka = (rovná se) se v nerovnicích objevují znaménka > (je větší než), < (je menší než), (je větší nebo rovno) nebo (je menší nebo rovno).
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Ekvivalentní úpravy nerovnic. Nerovnice řešíme podobně jako rovnice, to znamená pomocí ekvivalentních úprav, pomocí kterých převádíme nerovnice na jednodušší tvar, z něhož jsme schopni určit řešení nerovnice. Zopakujme si tedy, které ekvivalentní úpravy nerovnic již známe. 1. Kořeny nerovnice se nezmění, jestliže zaměníme levou a pravou stranu nerovnice a zároveň obrátíme znaménko nerovnosti. 2. Kořeny nerovnice se nezmění, jestliže k oběma stranám nerovnice přičteme stejné číslo nebo mnohočlen. 3. Kořeny nerovnice se nezmění, jestliže od obou stran nerovnice odečteme stejné číslo nebo mnohočlen.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Ekvivalentní úpravy nerovnic. Dnes se tedy podíváme na 4. ekvivalentní úpravu a opět budeme vycházet ze srovnání s ekvivalentními úpravami rovnic. 4. Kořeny rovnice se nezmění, jestliže obě strany rovnice vynásobíme stejným číslem nebo mnohočlenem (různým od nuly). x + 2 > 6 3.(x + 2) > 3.6 Nerovnost platí, a tak by se mohlo zdát, že i 4. ekvivalentní úprava platí ve stejném znění jako pro rovnice. /. 3 Opět dosadíme jedno z možných řešení, tedy číslo 5 a ověříme, zda nerovnost i po provedené úpravě platí. 3.(5 + 2) > > 18 Vynásobíme obě strany nerovnice číslem > 18 Zatím jsme si ji však vyzkoušeli jen s kladným číslem. Podívejme se tedy ještě na to, jestli bude platit i s čísly zápornými.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Ekvivalentní úpravy nerovnic. Pokračujeme 4. ekvivalentní úpravou. 4. Kořeny rovnice se nezmění, jestliže obě strany rovnice vynásobíme stejným číslem nebo mnohočlenem (různým od nuly). x + 2 > 6 −3.(x + 2) > −3.6 /. (−3) Opět dosadíme jedno z možných řešení, tedy číslo 5 a ověříme, zda nerovnost i po provedené úpravě platí. −3.(5 + 2) > −3.6 −3.7 > − 18 Vynásobíme tedy obě strany nerovnice číslem − 3. − 21 > − 18 Nerovnost neplatí, a tudíž ani 4. ekvivalentní úprava tak, jak jsme ji používali u rovnic, neplatí, respektive platí jen při násobení kladným číslem nebo mnohočlenem. Nerovnost by nadále platila i při násobení číslem záporným, kdybychom zároveň zaměnili (otočili) i znaménko nerovnosti! <<<<<<<<
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Ekvivalentní úpravy nerovnic. A nyní se podíváme ještě na 5. ekvivalentní úpravu. 5. Kořeny rovnice se nezmění, jestliže obě strany rovnice vydělíme stejným číslem nebo mnohočlenem (různým od nuly). x + 2 > 6 (x + 2):2 > 6:2 Nerovnost platí, a tak by se i nyní mohlo zdát, že i 5. ekvivalentní úprava platí ve stejném znění jako pro rovnice. / : 2 Opět dosadíme jedno z možných řešení, tedy číslo 5 a ověříme, zda nerovnost i po provedené úpravě platí. (5 + 2):2 > 6:2 7:2 > 6:2 Vydělíme obě strany nerovnice číslem 2. 3,5 > 3 Zatím jsme si ji však vyzkoušeli opět jen s kladným číslem. Podívejme se tedy ještě i tentokrát na to, jestli bude platit i s čísly zápornými.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Ekvivalentní úpravy nerovnic. A nyní se podíváme ještě na 5. ekvivalentní úpravu. 5. Kořeny rovnice se nezmění, jestliže obě strany rovnice vydělíme stejným číslem nebo mnohočlenem (různým od nuly). x + 2 > 6 (x + 2):(−2) > 6:(−2) / : (−2) Opět dosadíme jedno z možných řešení, tedy číslo 5 a ověříme, zda nerovnost i po provedené úpravě platí. (5 + 2):(−2) > 6:(−2) 7:(−2) > 6:(−2) Vydělíme obě strany nerovnice číslem - 2. − 3,5 > − 3 Nerovnost neplatí, a tudíž ani 5. ekvivalentní úprava tak, jak jsme ji používali u rovnic, neplatí, respektive platí jen při dělení kladným číslem nebo mnohočlenem. Nerovnost by nadále platila i při dělení číslem záporným, kdybychom zároveň zaměnili (obrátili) i znaménko nerovnosti! <<<<<<<<
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Ekvivalentní úpravy nerovnic. Jak se tedy změní znění ekvivalentních úprav číslo 4 a 5 pro nerovnice? 4. Kořeny nerovnice se nezmění, jestliže obě strany nerovnice vynásobíme či vydělíme stejným kladným číslem nebo mnohočlenem. 5. Kořeny nerovnice se nezmění, jestliže obě strany nerovnice vynásobíme či vydělíme stejným záporným číslem nebo mnohočlenem a zároveň obrátíme znaménko nerovnosti.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Procvičení úpravy č. 4 Vynásobte levou i pravou stranu rovnice kladným číslem (výrazem). Abychom se zbavili dvojky ve jmenovateli zlomku s proměnnou v čitateli, musíme nerovnici vynásobit právě číslem Kořeny nerovnice se nezmění, jestliže obě strany nerovnice vynásobíme stejným kladným číslem nebo mnohočlenem. Po úpravě na násobení zlomků můžeme využít krácení do kříže.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Procvičení úpravy č. 4 Vynásobte levou i pravou stranu rovnice kladným číslem (výrazem).
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Procvičení úpravy č. 4 Vynásobte levou i pravou stranu rovnice kladným číslem (výrazem).
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Procvičení úpravy č. 4 Vydělte levou i pravou stranu rovnice kladným číslem (výrazem). Abychom se zbavili dvojky před proměnnou, musíme nerovnici vydělit právě číslem ekvivalentní úprava: Kořeny nerovnice se nezmění, jestliže obě strany nerovnice vydělíme stejným kladným číslem nebo mnohočlenem. Po úpravě na zlomek můžeme využít znalosti krácení zlomků. Dělení přepíšeme do zlomku, přičemž využíváme znalosti, že zlomek je jiným zápisem dělení.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Procvičení úpravy č. 4 Vydělte levou i pravou stranu rovnice kladným číslem (výrazem).
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Procvičení úpravy č. 4 Vydělte levou i pravou stranu rovnice kladným číslem (výrazem).
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Procvičení úpravy č. 5 Vynásobte levou i pravou stranu rovnice záporným číslem (výrazem). Abychom se zbavili „znaménka minus“ na obou stranách nerovnice, musíme ji vynásobit číslem ekvivalentní úprava: Kořeny nerovnice se nezmění, jestliže obě strany nerovnice vynásobíme stejným záporným číslem nebo mnohočlenem a zároveň obrátíme znaménko nerovnosti. POZOR! Nesmíte zapomenout na obrácení znaménka! - x > x.(– 1) > - 3.(- 1) < x < 3 Ještě pořád se vám zdá, že jsme nutnost obrácení znaménka dokonale nedokázali? Tak to zkusíme ještě jednou a jinak. Nebudeme nerovnici upravovat pomocí ekvivalentní úpravy č. 5, ale pomocí úpravy č. 2, tzn. díky přičtení potřebných čísel či výrazů převedeme proměnnou vpravo a číselnou hodnotu vlevo. - x + x > x 0 > x > x +3 3 > x Čteme-li tedy zprava platí: x je menší než 3. Tedy totéž jako zde, při čtení zleva: x je menší než 3. Tak už jsem Vás přesvědčil, že při násobení obou stran nerovnice stejným záporným číslem nebo výrazem musíme obrátit znaménko nerovnosti?
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Procvičení úpravy č. 5 Vynásobte levou i pravou stranu rovnice záporným číslem (výrazem).
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Procvičení úpravy č. 5 Vynásobte levou i pravou stranu rovnice záporným číslem (výrazem).
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Procvičení úpravy č. 5 Vydělte levou i pravou stranu rovnice záporným číslem (výrazem). Abychom vyjádřili proměnnou x samostatně, musíme nerovnici vydělit „záporným výrazem“ (–2x). 5. ekvivalentní úprava: Kořeny nerovnice se nezmění, jestliže obě strany nerovnice vydělíme stejným záporným číslem nebo mnohočlenem a zároveň obrátíme znaménko nerovnosti. Po úpravě na zlomky můžeme využít znalosti krácení zlomků. Dělení přepíšeme do zlomku, přičemž využíváme znalosti, že zlomek je jiným zápisem dělení. Samozřejmě nesmíme zapomenout na určení podmínek řešitelnosti. V našem případě tedy na to, že výraz, kterým dělíme, se nesmí rovnat nule, neboť nulou nelze dělit.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Procvičení úpravy č. 5 Vydělte levou i pravou stranu rovnice záporným číslem (výrazem).
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Procvičení úpravy č. 5 Vydělte levou i pravou stranu rovnice záporným číslem (výrazem).
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Ekvivalentní úpravy nerovnic. Na závěr shrňme všechny ekvivalentní úpravy platné pro nerovnice. 1. Kořeny nerovnice se nezmění, jestliže zaměníme levou a pravou stranu nerovnice a zároveň obrátíme znaménko nerovnosti. 2. Kořeny nerovnice se nezmění, jestliže k oběma stranám nerovnice přičteme stejné číslo nebo mnohočlen. 3. Kořeny nerovnice se nezmění, jestliže od obou stran nerovnice odečteme stejné číslo nebo mnohočlen. 4. Kořeny nerovnice se nezmění, jestliže obě strany nerovnice vynásobíme či vydělíme stejným kladným číslem nebo mnohočlenem. 5. Kořeny nerovnice se nezmění, jestliže obě strany nerovnice vynásobíme či vydělíme stejným záporným číslem nebo mnohočlenem a zároveň obrátíme znaménko nerovnosti. Teorii máme za sebou a teď už tedy vzhůru na složitější a komplikovanější nerovnice.