Asynchronous Transfer Mode Projektování distribuovaných systémů Lekce 1 Ing. Jiří ledvina, CSc.

Slides:



Advertisements
Podobné prezentace
Úvod do počítačových sítí Úvod. Úvod do počítačových sítí •Úvod, síťové protokoly, architektury,standardy •Fyzická úroveň •Linková úroveň •Lokální počítačové.
Advertisements

D03 - ORiNOCO RG-based Wireless LANs - Technology
MPLS Multiprotocol Label Switching Projektování distribuovaných systémů Lekce 2 Ing. Jiří Ledvina, CSc.
Překlad síťových adres - NAT
Aktivní prvky - úvod. Aktivní prvky sítě zařízení, která potřebují napájení vzájemně jsou propojena pomocí pasivních prvků rozšiřují broadcastovou doménu.
VLAN Projektování distribuovaných systémů Lekce 2 Ing. Jiří ledvina, CSc.
Seminář 8 VLAN routing Srovnání směrování tradičního a VLAN routingu
Počítačové sítě Architektura a protokoly
1 Představa komunikačního procesu ve funkčních vrstvách 1.Přístup uživatele k síťové službě prostřednictvím aplikačního programu 2.Vytvoření datové „zprávy“
Asynchronous Transfer Mode Projektování distribuovaných systémů Lekce 1 Ing. Jiří ledvina, CSc.
Databázové systémy Architektury DBS.
Datové vs Hlasové přenosy Datové –přepojování paketů (packet switching) Hlasové –přepojování okruhů (Circuit Switching)
TCP a firevall Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T.G. Masaryka, Kostelec nad Orlicí Autor:
Shrnutí A – Principy datové komunikace B – TCP/IP 1.
CZ.1.07/1.4.00/ VY_32_INOVACE_168_IT 9 Výukový materiál zpracovaný v rámci projektu Vzdělávací oblast: Informační a komunikační technologie Předmět:Informatika.
Aktivní prvky pracující na linkové vrstvě. můstek přepínač Zařízení pracující na této vrstvě využívají schopnost učit se MAC adresy uzlů v různých segmentech.
VRS98 1 Multi-Protocol Over ATM MPOA další ze standardů sítí ATM Antonín Mikát Intercom Systems s.r.o.
Asynchronous Transfer Mode Projektování distribuovaných systémů Lekce 1 Ing. Jiří ledvina, CSc.
Počítačové sítě Implementace RM OSI
BootP Ing. Jiří Ledvina, CSc /12 Úvod Původně používání RARP Reverse Address Resolution protocol Dovoluje pouze distribuci adres na lokálním.
Datové sítě Ing. Petr Vodička.
Úroveň přístupu ke komunikačnímu médiu
Základy informatiky část 6
1 Seminář 9 MAC adresa – fyzická adresa interface (rozhraní) Je zapsána v síťové kartě. Je identifikátor uzlu na spoji. MAC adresu v paketu čte switch.
Internet.
Internet.
1 Implementace vrstev RM OSI Služby Pro aplikační program Pro transport dat SW HW OS aplikace User end (servery, PC…) směrovače přepínače.
Protokoly úrovně 3 nad ATM Projektování distribuovaných systémů Lekce 2 Ing. Jiří ledvina, CSc.
VPN - Virtual private networks Přednášky z Projektování distribuovaných systémů Ing. Jiří Ledvina, CSc.
Seminář 4 IPv4 adresace Základní pojmy – třída, subsíť, maska, prefix, inverzní maska (wildcard mask), broadcast, agregace Privátní (RFC 1918) a veřejné.
1 Počítačové sítě IP multicasting IP multicast – mechanismus pro skupinovou komunikaci v IP vrstvě Zdroj vysílá jeden datagram, na multicast směrovačích.
Počítačové sítě - architektura TCP/IP
Metro Ethernet Services Projektování distribuovaných systémů Ing. Jiří ledvina, CSc.
Internet Key Exchange Projektování distribuovaných systémů Ing. Jiří ledvina, CSc.
Internet protocol Počítačové sítě Ing. Jiří Ledvina, CSc.
Multimediální přenosy v IP sítích Libor Suchý Prezentace diplomové práce.
Počítačové sítě Implementace RM OSI Počítačové sítě - Vrstva datových spojů 1.
Základní pojmy Standard sítě Důvod vzniku standardů
Vrstvy ISO/OSI  Dvě skupiny vrstev  orientované na přenos  fyzická vrstva  linková vrstva  síťová  orientované na aplikace  relační vrstva  prezentační.
Počítačové sítě Architektura TCP/IP - úvod
Počítačové sítě IP multicasting
Ethernet Projektování distribuovaných systémů Lekce 18 Ing. Jiří Ledvina.
E- MAIL Ing. Jiří Šilhán. E LEKTRONICKÁ POŠTA NEBOLI vývoj od počátku sítí – původní návrh pouze pro přenos krátkých textových zpráv (ASCII) základní.
1 Technické specifikace sítí Ethernet 10Mbps Ethernet (dožívá) – IEEE –10BASE-T – dva UTP (cat-3/cat-5), propojovací zařízení – HUB nebo přepínač.
Virtualizace ● IP forwarding ● IP tunneling ● Virtuální síť.
Počítačové sítě 12. Další technologie LAN © Milan Keršlágerhttp:// Obsah: ● Arcnet.
 = jedná se o vzájemné propojení lokálních počítačových sítí pomocí vysokorychlostních datových spojů  vznikl spojením mnoha menších sítí  v každé.
SMĚROVÁNÍ V POČÍTAČOVÝCH SÍTÍCH Část 4 – Směrování v IPv6 Zpracovala: Mgr. Marcela Cvrkalová Střední škola informačních technologií a sociální péče, Brno,
NÁZEV ŠKOLY: S0Š Net Office, spol. s r.o, Orlová Lutyně AUTOR: Bc. Petr Poledník NÁZEV: Podpora výuky v technických oborech TEMA: Počítačové systémy ČÍSLO.
Transportní vrstva v TCP/IP Dvořáčková, Kudelásková, Kozlová.
Shrnutí A – Principy datové komunikace B – TCP/IP 1.
Síťová vrstva a vrstva síťového rozhraní v TCP/IP
TÉMA: Počítačové systémy
Virtuální privátní sítě
Multiprotocol Label Switching (MPLS)
Seminář 5 IPv4 adresace Základní pojmy – třída, subsíť, maska, prefix, inverzní maska (wildcard mask), broadcast, agregace Privátní (RFC 1918) a veřejné.
Počítačové sítě Architektura TCP/IP – v současnosti nejpoužívanější síťová architektura – architektura sítě Internet Uplatnění – user-end systémy (implementace.
PB169 – Operační systémy a sítě
Seminář 8 VLAN routing Srovnání směrování tradičního a VLAN routingu
IPv6 IPv6 (IPng) – budoucí náhrada současné IPv4
Implementace vrstev RM OSI
Počítačové sítě.
Počítačové sítě IP vrstva
Příklad topologie sítě Adresace v internetu MAC adresa – fyzická adresa interface (rozhraní) Je zapsána v síťové kartě. Je identifikátor uzlu.
Představa komunikačního procesu ve funkčních vrstvách
Implementace vrstev RM OSI
Počítačové sítě IP vrstva
Ing. Jiří Šilhán IPv4.
IPv6 druhá část Ing. Jiří Šilhán.
IP adresa a MAC Michaela Imlaufová.
Transkript prezentace:

Asynchronous Transfer Mode Projektování distribuovaných systémů Lekce 1 Ing. Jiří ledvina, CSc

Úvod Architektura ATM Signalizace a adresování Směrování Propojení ATM a existujících LAN – LAN emulace Nativní režimy ATM Multiprotocol over ATM

Úvod Základní vlastnosti ATM Spojově orientované – složitost, stavovost Signalizační protokoly – navázání spojení Adresování Směrování Kooperace s existujícími protokoly

Architektura ATM ATM síť – soubor přepínačů propojených dvoubodovými spoji Podporuje dva typy rozhraní UNI – User Node Interface – propojení směrovačů, hostitelských systémů s ATM přepínači NNI – Network Node Interface – vzájemné propojení přepínačů

Architektura ATM

ATM spojení Propojení virtuálními okruhy Virtuální cesty (virtual path) – VPI (identifikátor) Virtuální kanály (virtual channel) – VCI (identifikátor) Virtuální cesta – obsahuje více virtuálních kanálů Přepínání virtuálních cest Přepínání virtuálních kanálů VPI a VCI mají pouze lokální význam (vztahují se k lince)

ATM přepínač

ATM přepínání

Typy spojení PVC - Permanent Virtual Circult VPI/VCI nastavováno administrátorem ručně SVC - Switched Virtual Circult Dynamické vytváření a rušení spojení (signalizační protokoly) Soft PVC – PVC vytvořeno manuálně na úrovni UNI Vytvořeno dynamicky mezi NNI

Typy spojení Spojení bod – bod Jednosměrné nebo obousměrné Spojení bod – multibod Rozeznává kořen a list (počátek, konec) Jednosměrné spojení Připojování (join) a odpojování (leave) listů k doručovacímu stromu

Broadcasting a Multicasting Broadcast neexistuje (pouze LAN emulace) Řešení multicastingu VP – multicasting – každý uzel dostane společné VCI Multicast server – uzel který množí paketz – převod na spoje typu bod – bod Překrytí spojením typu „bod - multibod“ – vytvoření spojení bod – multibod každý s každým

Multicast server

Překrytí spojením bod - multibod

Signalizace Využívá virtuální kanál VPI/VCI = 0/5 Vytvářené spojení je potvrzované (request – confirm/reject) Signalizační protokol zjednodušený Q.2931

Modely adresování Každý signalizační protokol vyžaduje adresní schéma Potřebuje identifikovat zdrojové a cílové uzly Peer model Využívá adresování i směrovací protokoly „neseného“ protokolu (IP, OSPF) Složitější ATM přepínače (podpora směrování, směrovací tabulky) Subnetwork (Overlay) model Definuje nové adresní i směrovací schéma Existující protokoly operují nad ATM Obdoba IP nad X.25 nebo IP nad PPP Potřeba ARP (mapování IP adres na ATM adresy) Oddělení protokolu ATM od vyšších protokolů

Modely Peer model

Modely Overlay model

ATM adresy ATM adresa obsahuje AFI – Authority and Format Identifier (typ adresy a její formát) IDI – Initial Domain Identifier (autorita pro administraci a přidělování adres DSP – Domain Specific Part (směrovací informace) Existují 3 formáty ATM adres NSAP E.164 (ITU) DCC (Data Country Code) - státy ICD (BSI) - organizace

ATM adresy

Registrace adresy koncového zařízení Protokol ILMI (Interim Local Management Interface) – prozatímní Zjednodušení konfigurace ATM adresy koncového zařízení

Směrovací protokoly IISP – Interim Inter-Switch Signaling protocol Jednoduchý protokol směrování s manuálně konfigurovanými tabulkami prefixů v přepínačích Limitovaná rozlehlost sítě P-NNI – Private NNI Směrování v privátních sítích Podpora QoS B-ICI – Broadband Inter-Carrier Interface Směrování ve veřejných sítích

Hierarchie PNNI

PNNI vytváření spojení

Protokoly úrovně 3 nad ATM Projektování distribuovaných systémů Lekce 2 Ing. Jiří ledvina, CSc

Protokoly L3 nad ATM Přenos nativního protokolu přes ATM síť Přenos LAN přes ATM síť Používá IP adres (ne ATM adresy) – požadavky na přenos protokolu L3 – odlišné od ATM (spojované služby kontra nespojované služby, bcast, mcast kontra unicast) Je nutné řešit dva problémy Zapouzdření paketu Resoluce adresy (IP – ATM)

Protokoly L3 nad ATM Existují tři řešení zapouzdření a resoluce adresy LANE (LAN Emulation) – MAC protokol použitý pro realizaci transparentních LAN služeb nad ATM Rozšíření LANE je Multiprotocol over ATM (MPOA) Používá LANE a cut-through směrování ke zlepšení výkonnosti v rozlehlých sítích Operace v původním režimu (native mode) Založeno na protokolech definujících IP konektivitu nad ATM s použitím Zapouzdření IP nad ATM (obecně protokol L3) Resoluce ATM adresy ze síťové adresy (IP) Tomuto řešení se říká Classical IP and multiprotocol Encapsulation over ATM (Classical IP over ATM) Tag switching – technologie kombinuje výhody směrování s výkonností přepínání a tím nabízí jiné řešení pro přenos IP paketů přes ATM síť

Classical IP and Multiprotocol Encapsulation over ATM Přenos IP a dalších L3 protokolů přes ATM Classical IP and ARP over ATM (RFC 1577) Používá přepínané virtuální okruhy (SVCC) a permanentní virtuální kanály (PVCC) Specifikuje mechanizmus pro resoluci a vyhledávání adres Multiprotocol Encapsulation over ATM adaptation layer 5 (RFC 1483) Definuje zapouzdření různých typů PDU pro transport nad ATM

RFC 1577 ATM je použito k přímé náhradě propojení LAN segmentů obsahujících stanice s IP adresami a IP směrovači Tyto LAN segmenty se nazývají Logical IP Subnets (LIS) a jsou identické s konvenčními LAN subsítěmi ATM propojené systémy v různých LIS mají různé síťové adresy a mohou komunikovat pouze prostřednictvím směrovačů, i když jsou připojeny do téže ATM sítě Pro resoluci adres se používá ATMARP a InATMARP (Address Resolution Protocol a Inverse Adress Resolution Protocol)

Mechanizmus ATMARP V ATM neexistují broadcasty – není možné použít obdobu ARP v broadcast sítích (broadcast může být realizován jako rozesílání kopií v unicast kanálech) Řešeno ATMARP serverem – obsahuje tabulku IP a ATM adres pro jednu subsíť Libovolný klient může získat ATM adresu zařízení a navázat přímo spojení

Classical IP-over-ATM ARP klient registruje svoji IP a ATM adresu v ARP serveru Klient A hledá ATM adresu pro IP B, server vrací ATM adresu B Klient vytváří ATM SVCC na klienta B a posílá mu data Jakmile klient B odpovídá na paket z A, posílá též dotaz na ARP server Po obdržení ATM adresy A zjišťuje klient B, že SVCC již existuje a další nevytváří Klient B posílá data do A. V každé LIS musí být směrovač, konfigurovaný jako ATMARP klient nebo lépe ve směrovači může běžet ATMARP server.

Mechanizmus InATMARP V tomto případě není třeba funkce ATM serveru Klienti si vyměňují informaci a vyhledávají ostatní protokolové adresy K vyhledání protokolové (IP) adresy na druhém konci spojení pošle klient InATMARP dotaz po existujícím spojení

RFC 1483 Multiprotocol Encapsulation over ATM Mechanizmus zahrnuje i přenos jiných rámců než jsou IP pakety Existují 2 možnosti jak to zařídit LLC/SNAP zapouzdření – různé protokoly mohou být přenášeny jedním ATM spojením a identifikovány standardním LLC/SNAP záhlavím Multiplexování virtuálního spojení – přes ATM spojení je přenášen pouze jeden protokol – protokol je implicitně dán při vytváření spojení

Možné kombinace RFC 1483 a RFC 1577 SVCC a ATMARP Zapouzdření IP datagramů nad ATM (routed IP formát) Použití ATM ARP k mapování IP na ATM adresu PVCC a InATMARP Mezi síťovými zařízeními jsou konfigurovány staticky cesty (PVCC) Rozpoznání IP adresy se děje pomocí ATM adresy koncového uzlu a InATMARP IP pakety jsou přenášeny ve SNAP

SVCC a ATMARP

Zapouzdření IP datagramů nad ATM (routed IP formát) Použití ATM ARP k mapování IP na ATM adresu Výhody: Pro propojení IP subsítě je jednodušší než LANE Jednoduchá konfigurace pro malé sítě (adresa ATMARP serveru) Podpora ATMARP od mnoha výrobců

SVCC a ATMARP Omezení: Nemá podporu multicastu Podporuje pouze IP Není možnost ořezat tok dat ve směrovačích Při přenosu přes více LIS se musí použít směrovače i když přenosy probíhají v jedné ATM síti ATMARP server je úzké místo v systému Ve velkých sítích nebezpečí chybné konfigurace ATMARP serverů (musí být ve všech klientech)

PVCC a InATMARP Mezi síťovými zařízeními jsou konfigurovány staticky cesty (PVCC) Rozpoznání IP adresy se děje pomocí ATM adresy koncového uzlu a InATMARP IP pakety jsou přenášeny ve SNAP Výhody: InATMARP je podporováno mnoha výrobci Konfigurace pro propojené IP subsítě je jednodušší než LANE

PVCC a InATMARP Omezení: Nemá podporu multicastu Podporuje pouze IP Není možnost ořezat tok dat ve směrovačích Při přenosu přes více LIS se musí použít směrovače i když přenosy probíhají v jedné ATM síti Ve velkých sítích nebezpečí chybné konfigurace ATMARP serverů (musí být ve všech klientech)

VLAN Projektování distribuovaných systémů Lekce 3 Ing. Jiří ledvina, CSc

VLAN Virtual LAN Cíl – rozdělení fyzicky propojených počítačů do skupin, které fungují tak, jako by nebyly fyzicky propojeny (na rozdíl od VPN) Logický segment sítě Jedna broadcastová doména Přenosy spojené s VLAN jsou chráněny před přístupem uživatelů jiných VLAN Jsou šířeny jen do VLAN Multicasty a broadcasty šířeny pouze ve VLAN

VLAN Virtual LAN Ve skupině jsou síťová zařízení, která Mohou být umístěna na více fyzických LAN Neexistují omezení vzhledem k fyzickému umístění Mohou komunikovat jako by byly všechny na jedné LAN

Důvody zavedení VLAN Nezávislost na umístění Mobilita uživatelů – zůstávají ve stejné LAN i po přemístění Lepší bezpečnost a vyšší výkonnost Přenosy ve VLAN jsou přepínané, mezi různými VLAN směrované Členství ve VLAN je definováno administrátorem LAN organizovány podle funkčních skupin, nikoliv podle fyzického umístění Uspořádání podle pravidla – přepínej pokud potřebuješ, směruj pokud musíš

Typy VLAN Členství ve VLAN může být podle Skupin portů (VLAN úroveň 1) MAC adres (VLAN úroveň 2) Protokolu 3 a vyšší úrovně (VLAN úroveň 3)

VLAN podle portů port switching – přepínání portů může být použito pro zvýšení bezpečnosti a zajištění izolovanosti neumožňuje mobilitu uživatelů přesunutý uživatel má novou sub-síť – nová IP adresa (směrovač)

VLAN založené na MAC adresách vyžaduje předchozí registraci počítačů členství ve VLAN je udržováno i při fyzickém přemístění počítače různých VLAN mohou být připojeny do jednoho portu přepínače LAN je definována seznamem MAC adres Zajišťuje úplný pohyb uživatele Pokud je třeba, jsou klienti i servery stále na téže LAN Problém: potřeba udržovat příliš mnoho adres

VLAN úrovně 3 Členství ve VLAN odvozeno od pole TYPE protokolu a podle adresových polí IP VLAN konfigurace je určena přepínači Do VLAN nepřísluší stanice, ale pakety Více-protokolové stanice mohou být ve více VLAN Obecně pomalejší než předchozí 2 typy VLAN členství ve VLAN je určováno podle úrovně 3, ale nemá nic společného se směrovači nebo směrováním IP adresa je použita pouze k mapování na VLAN, není jinak zpracovávána

VLAN trunk – vzdálené propojení lokálních sítí Podle doporučení IEEE 802.1q Přenos pro více VLAN jednou linkou – trunk (dálkové vedení) Rámce Ethernetu jsou označovány VLAN ID (tag) Schonost zpracovávat VLAN-ová i ne-VLAN- ová zařízení

VLAN tagging (značkování paketů VLAN) Hranový přepínač (Ingress switch) přidá značku obsahující ID VLAN do příchozích paketů Mezilehlé přepínače VLAN ID nepřepočítávají Poslední hranový přepínač (Egress switch) značku z odchozího rámce odstraní. Rámec TPID – Tag Protocol ID CFI – Canonical Format Indicator (přítomnost-nepřítomnost části RIF) RIF – Source Routing Information Field 01 – bez směrování max délka dat v IEEE slabik priorita 0 < 1 < 2 <... < 7

VLAN tagging (značkování paketů VLAN) Destination MAC Source MAC 802.1Q Tag Protocol type field DataFCS 6 bytes 4 bytes2 bytes46–1,500 bytes4 bytes PriorityCFIVLAN ID Tag protocol identifier Tag control field Proprietary 2-byte number 16 bits3 bits1 bit12 bits

Vlastnosti IEEE 802.1Q dovoluje až 4095 VLAN dovoluje port, MAC, L3 i vyšší VLAN dovoluje míchat klasické i VLAN přepínače rozšiřuje IEEE 802.1p (priority) na VLAN

Vlastnosti IEEE 802.Q High priority Medium priority Low priority 1010 Three priority levels

Filtrovací databáze na daném LAN segmentu pro danou VLAN musí být všechny rámce značkovány různé VLAN na tomtéž segmentu mohou využívat různé parametry informace o členství ve VLAN je uložena ve filtrovací databázi existují 2 typy položek VLAN registrační položky (port a VLAN) Skupinové registrační položky (posílání m-castů do VLAN) Oba typy mohou být statické nebo dynamické Statické položky – zařizuje management Dynamické položky – naučené, časově omezená platnost

Vytváření a propagace dynamických VLAN položek GVRP GVRP – GARP VLAN Registration Protocol GARP – Generic Attribute Registration Protocol GARP členové – vytváří/ruší členství ve VLAN (přidávání/rušení položek) VLAN přepínače musí propagovat změny členství ve VLAN na všechny aktivní porty GMRP – Group Multicast Registration Protocol Položky registrace skupin – indikují pro každý port má-li tam být multicast rámec pro VLAN poslán nebo ne

VPN - Virtual private networks Projektování distribuovaných systémů Lekce 4 Ing. Jiří Ledvina, CSc.

Virtual Private Networks

Privátní sítě – používají pronajaté linky Virtuální privátní sítě – používají veřejný Internet VPN Dovolují vytvořit bezpečné privátní sítě nad veřejnými sítěmi jako je Internet Mohou být vytvářeny pomocí HW, SW nebo kombinací HW a SW Jsou realizovány jako propojení 2 sítí, 2 hostů nebo síť – host.

Bezpečnost VPN Authentication (ověřování pravosti) – zabezpečí, že data přicházejí ze zdroje, ze kterého tvrdí, že přicházejí Access Control (kontrola přístupu) – omezování neautorizovaných uživatelů – kontrola práv uživatelů Confidentality (důvěrnost) – ochrana dat přenášených veřejnou sítí před čtením nebo kopírováním neoprávněnými osobami Data Integrity (integrita dat) – zajištění, aby nikdo nemohl nepozorovaně měnit data při přenosu přes Internet

VPN - komponenty VPN – používané komponenty, principy Obranné valy (Firewalls) – povolení vstupu uživatelům VPN do sítě a zabránění vstupu nechtěným návštěvníkům (filtrace, proxy) Ověřování – používají se schémata založená na systémech se sdíleným klíčem, jako je Challenge Handshake Authentication Protocol (CHAP), RSA,.... Zajišťují také integritu dat. Šifrování – zajištění důvěrnosti i integrity - zapouzdření dat do bezpečné obálky (šifrování tajným klíčem)

VPN - komponenty VPN – používané komponenty, principy Tunelování – přizpůsobení nekompatibilních protokolů. Např. propojení LAN s NetBEUI nebo IPX přes Internet (IP) Překlad adres – použití privátních adres (RFC 1918) /8, /12, /16 Nedostatek IP adres Časté změny poskytovatele

Architektura VPN VPN funkce mohou být implementovány ve směrovačích, přepínačích, obranných valech, ve vybraných modulech, které zajišťují Ověřování Tunelování Šifrování/dešifrování Pracovních stanicích

Architektura VPN – varianta 1 Tunelování je iniciované klientem nad vytáčenou linkou Funkce VPN (tunelování, šifrování) běží na uživatelské stanici Ověřování probíhá ve dvou krocích ISP ověřování – přístup do Internetu (ISP RADIUS server) VPN ověřování – přístup do VPN

Architektura VPN – varianta 2 Mezi uživatelem a NAS (Network Access Server) není tunel, ale může být Může být i šifrováno ISP (Internet Service Provider) ověřuje uživatele pro přístup do Internetu i VPN (RADIUS server)

Architektura VPN – varianta 3 Varianta 3 (a další) – VPN typu LAN – LAN

Úrovně realizace VPN Packet oriented VPN (3 úroveň a výše) Application oriented VPN (5 úroveň a výše) Protokoly Secure Shell (6 – 7 úroveň) Socks v.5 (5 úroveň) IPSec, SKIP (3 úroveň) PPTP/L2TP (2 úroveň)

Přehled VPN tunelovacích protokolů GRE – RFC 1701, RFC 1702 – Generic Routing Encapsulation PPTP Point-to-point Tunneling Protocol L2F – Layer 2 forwarding L2TP – Layer 2 Tunneling Protocol ATMP – Ascend Tunnel Management Protocol DLSW – Data Link Switching (SNA over IP) IPSec – Secure IP Mobil IP – IP pro mobilní hosty

PPTP – Point-to-point Tunneling Protocol Původně vyvinut pro vzdálený přístup do Internetu Microsoft, Ascend, USRobotics, 3COM, ECI Telematics Jednoduchá konstrukce VPN Ověřovací mechanizmus PAP (Password Authentication protocol), CHAP, MS CHAP Dovoluje tunelování IPX, AppleTalk Vytváří TCP spojení mezi PPTP klientem a serverem (port 1723) Datové pakety šifrovány, PPP pakety komprimovány GREv2 – vytváření IP datagramu (protokol ID v IP záhlaví 47)

L2TP – Layer 2 Tunneling Protocol L2F – Layer 2 Forwarding L2TP = L2F + PPTP Povoluje vytvořit více relací jedním tunelem, více QoS tunelů mezi 2 koncovými body Lepší komprese záhlaví, podpora řízení toku dat Použitelný i nad ne-IP sítěmi (ATM, FrameRelay, X.25) Nespecifikuje ověřování a šifrování

IPSec (RFC 2401 – RFC 2406) Zajišťuje ověřování a integritu dat – AH Authentication Header – pouze doplnění o zajištění integrity Zajišťuje důvěrnost a integritu dat – ESP Encapsulating Security Payload – zapouzdření paketu a šifrování jeho obsahu Pracuje v režimu Transportním – přenos paketu mezi koncovými uživateli. Používá originální IP adresy. Tunelovacím – přenos paketu mezi konci tunelu. Na portálech dochází k zapouzdření paketu přidáním nového IP záhlaví s IP adresami portálů tunelu. Transportní režim s AH Transportní režim s ESP Tunelovací režim s AH Tunelovací režim s ESP

IPsec – transportní režim

IPsec – tunelovací režim

IPsec a VPN