Úvod do klasických a moderních metod šifrování Jaro 2012, 4. přednáška.

Slides:



Advertisements
Podobné prezentace
VÝPOČET OC.
Advertisements

Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Shodnost trojúhelníků Konstrukce trojúhelníků Věta sss
Kryptografie Šifrování
Utvořte negaci výroku, a to bez použití záporu.
Soustava lineárních rovnic o více neznámých I.
Úvod do klasických a moderních metod šifrování Jaro 2008, 7. přednáška.
PA081 Programování numerických výpočtů Přednáška 4.
Základy informatiky přednášky Kódování.
Přednáška 12 Diferenciální rovnice
Medians and Order Statistics Nechť A je množina obsahující n různých prvků: Definice: Statistika i-tého řádu je i-tý nejmenší prvek, tj., minimum = statistika.
 př. 4 výsledek postup řešení Zjistěte, zda jsou vektory a, b, c lineárně závislé. a=(1;2;3), b=(3;0;1), c=(-1;4;5)
Tento Digitální učební materiál vznikl díky finanční podpoře EU- Operačního programu Vzdělávání pro konkurenceschopnost Není –li uvedeno jinak, je tento.
KOMBINAČNÍ LOGICKÉ FUNKCE
JavaScript Podmínky, cykly a pole.
Název školyIntegrovaná střední škola technická, Vysoké Mýto, Mládežnická 380 Číslo a název projektuCZ.1.07/1.5.00/ Inovace vzdělávacích metod EU.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Historie kryptografie
Jedno-indexový model a určení podílů cenných papírů v portfoliu
Úvod do klasických a moderních metod šifrování Jaro 2012, 3. přednáška.
Herní plán Obecné vlastnosti příčky
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Mgr. Martin Krajíc matematika 1.ročník rovnice a nerovnice
Ekvivalentní úpravy rovnic
R OVNICE A NEROVNICE Základní poznatky o rovnicích VY_32_INOVACE_M1r0101 Mgr. Jakub Němec.
Ukázky aplikací matematiky Jaro 2014, 2. přednáška.
Soustava dvou rovnic o dvou neznámých – dosazovací metoda
Sylabus V rámci PNV budeme řešit konkrétní úlohy a to z následujících oblastí: Nelineární úlohy Řešení nelineárních rovnic Numerická integrace Lineární.
Mgr. Martin Krajíc matematika 3.ročník analytická geometrie
STŘEDNÍ ODBORNÁ ŠKOLA A STŘEDNÍ ODBORNÉ UČILIŠTĚ NERATOVICE Školní 664, Neratovice, tel.: , IČO: , IZO: Ředitelství.
Ukázky aplikací matematiky Jaro 2014, 3. přednáška.
Soustavy dvou lineárních rovnic se dvěma neznámými
Hillova šifra Lester S. Hill (1929) Polygrafická šifra Φ: Amx K  Bm
Úvod do klasických a moderních metod šifrování Jaro 2008, 3. přednáška.
McEllisova šifra.
McEllisova šifra. James Ellis( ) Clifford Cocks, Malcolm Williamson Alice Bob zpráva šum Odstranění šumu.
Automatické šifrování Enigma. Scrambler Φ(x) monoalfabetická šifra Ψ(x,m) = Φ(x+m mod N)
2 přirozené konstrukce pravidelného pětiúhelníku
Automatické šifrování
Enigma JSMF, Jasná pod Chopkom Polsko 1928 MFNOJ WYFHJ EXZZD BJNDS BECFE NGQOU CFWZE RBSFQ WCUCQ XCKTT RDOAC VDYPM XYOFF HMSOZ THOSD HFPDI.
„ MATEMATIKA NÁS TĚŠÍ “ VSTOUPIT Soustavy lineárních nerovnic o jedné neznámé Interaktivní prezentace nabízí zcela nové dosud nepublikované příklady.
Složitost algoritmu Vybrané problémy: Při analýze složitosti jednotlivých algoritmů často narazíme na problém, jakým způsobem vzít v úvahu velikost vstupu.
Úvod do databázových systémů
EU peníze školám Základní škola , Znojmo, Mládeže
Lineární rovnice Druhy řešení.
Věty o podobnosti trojúhelníků
Soustava lineárních rovnic
Ukázky aplikací matematiky
ZAL – 3. cvičení 2016.
Goniometrické funkce Autor © Mgr. Radomír Macháň
Goniometrické funkce Autor © Mgr. Radomír Macháň
Soustava dvou lineárních rovnic se dvěma neznámými
Lineární rovnice Druhy řešení.
Lineární rovnice Druhy řešení.
Ukázky aplikací matematiky
Úvod do klasických a moderních metod šifrování
Soustava dvou lineárních rovnic se dvěma neznámými
Klasické šifry – princip substituce, transpozice
Úvod do klasických a moderních metod šifrování
Nerovnice Ekvivalentní úpravy - 1..
Úvod do klasických a moderních metod šifrování
Úvod do klasických a moderních metod šifrování
Název projektu: Moderní výuka s využitím ICT
Ukázky aplikací matematiky
Ukázky aplikací matematiky
Soustava dvou lineárních rovnic se dvěma neznámými
Věty o podobnosti trojúhelníků
Ukázky aplikací matematiky
Ukázky aplikací matematiky
Transkript prezentace:

Úvod do klasických a moderních metod šifrování Jaro 2012, 4. přednáška

Nastupuje psychologie Až sem bylo možné se dostat pouze za použití matematických prostředků. Problém byl v tom, že uvedenou soustavu tří rovnic o třech neznámých neuměl Marian Rejewski vyřešit (a neumí to dosud nikdo). Věděl ale, že by z původních rovnic A= S -1 H -1 P -1 N -1 PQP -1 NPHS B= S -1 H -1 P -2 N -1 P 2 QP -2 NP 2 HS C= S -1 H -1 P -3 N -1 P 3 QP -3 NP 3 HS D= S -1 H -1 P -4 N -1 P 4 QP -4 NP 4 HS E= S -1 H -1 P -5 N -1 P 5 QP -5 NP 5 HS F= S -1 H -1 P -6 N -1 P 6 QP -6 NP 6 HS uměl vypočítat N, pokud by znal permutace A, B, C, D, E, F a H. A v tom mu německá armáda pomohla svými chybami.

Chyby operátorů V tabulce počátků odposlechnutých zpráv odvysílaných během manévrů se mnoho počátečních šestic vyskytuje vícekrát Kdyby operátoři opravdu volili klíče zpráv jako náhodné trojice písmen, tak by se mezi 64 odposlechnutými zprávami mohla vyskytnout nejvýše jedna dvojice se stejnými počátečními šesti písmeny. Vzhledem k jejich velkému výskytu bylo zřejmé, že operátoři nevolí klíče zpráv náhodně. Pokud je nevolili náhodně, jaké stereotypy pro jejich výběr pravděpodobně používali? Rejewski si řekl, že nejspíš volí trojice stejných písmen nebo trojice sousedních písmen na klávesnici. Dejme tomu, že nějaká obsluha zvolila v daný den klíč zprávy AAA. Vzhledem k charakteristice DA = (a),(s),(bc),(rw),(dvpfkxgzyo),(eijmunqlht) musí permutace A zobrazovat písmeno A do písmene S, a proto šifrovou podobou klíče zprávy AAA musí být některá z počátečních šestic začínajících na S.

Která volba je správná? V úvahu tak přicházejí počáteční šestice 35. SYX SCW, 40. SJM SPO, 43. SUG SMF. Ověříme, jsou-li tyto volby také v souladu s charakteristikami EB = (axt),(blfqveoum),(cgy),(d),(hjpswizrn),(k) a FC = (abviktjgfcqny),(duzrehlxwpsmo) Písmeno A musí totiž ležet spolu s druhým písmenem každé zprávy v různých cyklech téže délky charakteristiky EB. To ale splňuje pouze šestice 35. SYX SCW. Pro tuto šestici platí také, že písmeno A leží s třetím písmenem X v různých cyklech stejné délky charakteristiky FC. Šestice 35. SYX SCW je tak stále možným kandidátem na šifrovou podobu klíče zprávy AAA v daný den.

Klíče zpráv při manévrech Tato volba jednoznačně určuje permutace C,F, hodnoty permutací B,E na šesti prvcích dvou cyklů délky 3 charakteristiky EB a hodnoty permutací A,D na prvcích A,S. Pomocí dvou dalších odhadů podobného druhu byl schopen rekonstruovat klíče všech zpráv odeslaných během manévrů. AUQ AMN sss BNH CHL rfv BCT CGJ rtz CIK BZT wer DDB VDV ikl EJP IPS vbn GPB ZSV hjk HNO THD fff HXV TTI fgh IKG JKF ddd IND JHU dfg JWF MIC ooo KHB XJV lll LDR HDE kkk MAW UXP yyy NXD QTU ggg NLU QFZ ghj OBU DLZ jjj PVJ FEG tzu QGA LYB xxx RJL WPX bbb RFC WQQ bnm SYX SCW aaa SJM SPO abc SUG SMF asd TMN EBY ppp TAA EXB pyx USE NWH zui VII PZK eee VQZ PVR ert WTM RAO ccc WKI RKK cde XRS GNM qqq XOI GUK qwe XYW GCP qay YPC OSQ mmm ZZY YRA uvw ZEF YOC uio ZSJ YWG uuu

Odhad permutace H Tím získal pro daný den permutace A,B,C,D,E,F a mohl je považovat za známé. Protože v komerční verzi přístroje byly klávesy propojené na obvod vstupního rotoru podle jejich pořadí na klávesnici, Rejewski si řekl, že tomuto propojení konstruktéři nepřikládali kryptologický význam, a zkusil dosadit toto propojení H do svých rovnic. Dostal tak soustavu šesti rovnic A= S -1 H -1 P -1 N -1 PQP -1 NPHS B= S -1 H -1 P -2 N -1 P 2 QP -2 NP 2 HS C= S -1 H -1 P -3 N -1 P 3 QP -3 NP 3 HS D= S -1 H -1 P -4 N -1 P 4 QP -4 NP 4 HS E= S -1 H -1 P -5 N -1 P5QP -5 NP 5 HS F= S -1 H -1 P -6 N -1 P6QP -6 NP 6 HS o dvou neznámých.

Řešení Tu už šlo řešit rutinním způsobem. Co nejvíce známých permutací převedl na levou stranu. Dostal tak rovnice PHSAS -1 H -1 P -1 = N -1 PQP -1 N P 2 HSBS -1 H -1 P -2 = N -1 P 2 QP -2 N P 3 HSCS -1 H -1 P -3 = N -1 P 3 QP -3 N P 4 HSDS -1 H -1 P -4 = N -1 P 4 QP -4 N P 5 HSES -1 H -1 P -5 = N -1 P 5 QP -5 N P 6 HSAS -1 H -1 P -6 = N -1 P 6 QP -6 N Levé strany jsou samé známé permutace, mohl tedy spočítat jejich složení a nahradit je jedinou permutací.

Okamžik pravdy V soustavě U = N -1 PQP -1 N V = N -1 P 2 QP -2 N W = N -1 P 3 QP -3 N X = N -1 P 4 QP -4 N Y = N -1 P 5 QP -5 N Z = N -1 P 6 QP -6 N Vynásobil vždy dvojice po sobě jsoucích rovnic. UV = N -1 PQP -1 NN -1 P 2 QP -2 N VW = N -1 P 2 QP -2 NN -1 P 3 QP -3 N WX = N -1 P 3 QP -3 NN -1 P 4 QP -4 N XY = N -1 P 4 QP -4 NN -1 P 5 QP -5 N YZ = N -1 P 5 QP -5 NN -1 P 6 QP -6 N. Po úpravě UV = N -1 PQPQP -1 P -1 N VW = N -1 P 2 QPQP -1 P -2 N WX = N -1 P 3 QPQP -1 P -3 N XY = N -1 P 4 QPQP -1 P -4 N YZ = N -1 P 5 QPQP -1 P -5 N. Všechny známé permutace UV,VW,WX,XY a YZ jsou tak konjugované s neznámou permutací QPQP -1, a musí mít proto stejný cyklický typ. A to neměly !!

Chyba konstruktérů Kde se při výpočtech stala chyba? Rejewski zkoušel různé dny, aby vyloučil možnost, že si zvolil den, ve kterém došlo při šifrování klíče zprávy ke změně polohy prostředního rotoru. Problém ale stále zůstával. Připomeňme si, že U = PHSAS -1 H -1 P -1 V = P 2 HSBS -1 H -1 P -2 W = P 3 HSCS -1 H -1 P -3 X = P 4 HSDS -1 H -1 P -4 Y = P 5 HSES -1 H -1 P -5 Z = P 6 HSAS -1 H -1 P -6. Protože volba permutací A,B,C,D,E,F dávala velké množství stereotypních klíčů, poslední podezřelou volbou byla volba propojení do vstupního rotoru H. Protože volba propojení v pořadí písmen na klávesnici nefungovala, Rejewski zkusil jiné pravidelné propojení na obvod vstupního rotoru, tentokrát v pořadí podle abecedy. Ze zdířky A na místo A na vstupním rotoru, ze zdířky B na místo B, atd. To znamenalo volbu H jako identické permutace, čili úplné vypuštění H z rovnic. A to fungovalo !!

Konec výpočtů V = P 2 BS -1 P -2 W = P 3 SCS -1 P -3 X = P 4 SDS -1 P -4 Y = P 5 SES -1 P -5 Z = P 6 SAS -1 P -6. U = PSAS -1 P -1 Při volbě měly součiny UV, VW, WX, XY, YZ stejný cyklický typ, výpočty prošly okamžikem pravdy. Z rovnice UV = N -1 PQPQP -1 P -1 N vypočítal P -1 NUVN -1 P = QPQP -1 QPQP -1 a dosadil výraz do rovnice VW = N -1 P 2 QPQP -1 P -2 N Dostal tak VW = N -1 P 2 QPQP -1 P -2 N = N -1 P 2 P -1 NUVN -1 P P -2 N = (N -1 PN ) UV ( N -1 P -1 N ).

WX = (N -1 PN)VW(N -1 P -1 N) XY = (N -1 PN)WX(N -1 P -1 N) YZ = (N -1 PN)XY(N -1 P -1 N) Tato soustava měla jediné řešení pro výraz N -1 PN. A známe-li permutaci NPN -1, existuje přesně 26 možností pro propojení v pravém rotoru N. 26 možností pro N Odtud získal několik desítek možností pro N -1 P N. Podobně získal další rovnice VW = (N -1 PN)UV(N -1 P -1 N) Tímto jediným řešením byl cyklus délky 26.

Důsledky Z odposlechnutých zpráv z dalších dní, kdy bylo pořadí rotorů jiné, Rejewski dokázal vybrat tu správnou z 26 možností pro N, vypočítat propojení ve zbývajících rotorech a reflektoru, polohu zářezů na abecedních kroužcích a všechny ostatní detaily konstrukce Enigmy. Koncem roku 1932 polská tajná služba sestrojila funkční repliku Enigmy a luštila s její pomocí šifrované depeše. V červenci 1939 Polsko předalo kopie Enigmy a veškeré informace o jejím řešení britské a francouzské tajné službě. Konec