Metabolismus nukleotidů Kurz Eva Samcová a Vladimíra Kvasnicová

Slides:



Advertisements
Podobné prezentace
METABOLISMUS BÍLKOVIN I Katabolismus
Advertisements

6. Nukleové kyseliny Nukleové kyseliny jsou spolu s proteiny základní a nezbytnou složkou živé hmoty. Hlavní jejich funkce je uchování genetické informace.
Katabolický = energetický metabolismus 3.1. Fermentace 3.2. Respirace
Báze Struktura NK DNA RNA konec.
Metabolismus aminokyselin
Metabolismus aminokyselin - testík na procvičení -
Molekulární základy dědičnosti
Biologicky významné heterocykly
BIOLOGIE 1 Rostliny Biologické vědy Metody práce v biologii
Metabolismus lipidů Pavla Balínová.
Metabolismus lipidů Vladimíra Kvasnicová.
John R. Helper & Alfred G. Gilman Zuzana Kauerová 2005/2006
Nukleové kyseliny AZ-kvíz
NUKLEOVÉ KYSELINY BIOCHEMIE.
Metabolismus aminokyselin II. Močovinový cyklus
Nutný úvod do histologie
Základy biochemie KBC/BCH
Heterocykly.
Metabolismus lipidů.
Dýchací řetězec (DŘ) - testík na procvičení -
Metabolismus dusíkatých látek
DÝCHACÍ ŘETĚZEC. enzymy jsou umístěny na vnitřní membráně mitochondrií získání energie (tvorba makroergických vazeb v ATP) probíhá oxidací redukovaných.
Metabolismus sacharidů II.
Biokalyzátory chemických reakcí
METABOLISMUS LIPIDŮ.
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: III/2VY_32_inovace_225.
NUKLEOVÉ KYSELINY A JEJICH METABOLISMUS
Metabolismus sacharidů - testík na procvičení –
(Citrátový cyklus, Cyklus kyseliny citrónové)
Enzymy - testík na procvičení –
Genetika.
Metabolismus tetrapyrolů: porfyrinů a žlučových barviv
Krebsův a dýchací cyklus
Obecný metabolismus Metabolismus: Základní pojetí a obsah pojmu.
Molekulární genetika.
Metabolismus purinů a pyrimidinů - testík na procvičení -
Cyklus kyseliny citrónové, citrátový cyklus.
Metabolimus purinů a pyrimidinů
Bioenergetika Pro fungování buněčného metabolismu nutný stálý přísun energie Získávání, přenos, skladování, využití energie Na co se energie spotřebovává.
Citrátový cyklus a dýchací řetězec
Citrátový cyklus (CC) - testík na procvičení -
Energetický metabolismus
INTERMEDIÁRNÍ METABOLISMUS
Intermediární metabolismus
Výukový materiál zpracován v rámci projektu EU peníze školám
Metabolismus sacharidů
METABOLISMUS NUKLEOTIDů
MITOCHONDRIÁLNÍ TRANSPORTNÍ SYSTÉMY
Proteiny krevní plazmy
Metabolismus pentóz, glykogenu, fruktózy a galaktózy
Glykolýza Glukoneogeneze Regulace
Biochemie zvláštních situací
2014 Výukový materiál GE Tvůrce: Mgr. Šárka Vopěnková Projekt: S anglickým jazykem do dalších předmětů Registrační číslo: CZ.1.07/1.1.36/
Metabolismus nukleotidů Kurz Eva Samcová a Vladimíra Kvasnicová
METABOLISMUS AMINOKYSELIN
Základy molekulární genetiky. Bílkoviny Makromolekuly složené z aminokyselin jedna molekula bílkoviny tvořena obvykle stovkami aminokyselin v živých organismech.
Autor: Ing. Michal Řehulka  Přírodní makromolekulární látky (Biopolymery)  Vytvářejí dlouhé vláknité molekuly  Nesou a uchovávají genetickou informaci.
Fotosyntéza.
Poruchy metabolismu purinů
Krebsův a dýchací cyklus
Metabolismus aminokyselin.
Metabolismus nukleotidů
Nukleové kyseliny obecný přehled.
(Citrátový cyklus, Cyklus kyseliny citrónové)
BIOCHEMICKÁ ENERGETIKA
Molekulární základy genetiky
20_Glykolýza a následný metabolizmus
Biochemie – Citrátový cyklus
DUM č. 18 v sadě 22. Ch-1 Biochemie projekt GML Brno Docens
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
Transkript prezentace:

Metabolismus nukleotidů Kurz 4 - 407 Eva Samcová a Vladimíra Kvasnicová

PURINOVÉ BÁZE Obrázek je převzat z učebnice: Devlin, T. M. (editor): Textbook of Biochemistry with Clinical Correlations, 4th ed. Wiley‑Liss, Inc., New York, 1997. ISBN 0‑471‑15451‑2

ribonukleosid deoxyribonukleosid N-glykosidová vazba Obrázek je převzat z učebnice: Devlin, T. M. (editor): Textbook of Biochemistry with Clinical Correlations, 4th ed. Wiley‑Liss, Inc., New York, 1997. ISBN 0‑471‑15451‑2

ribonukleotid deoxyribonukleotid Obrázek je převzat z učebnice: Devlin, T. M. (editor): Textbook of Biochemistry with Clinical Correlations, 4th ed. Wiley‑Liss, Inc., New York, 1997. ISBN 0‑471‑15451‑2

PYRIMIDINOVÉ BÁZE Obrázek je převzat z učebnice: Devlin, T. M. (editor): Textbook of Biochemistry with Clinical Correlations, 4th ed. Wiley‑Liss, Inc., New York, 1997. ISBN 0‑471‑15451‑2

ribonukleosidy deoxyribonukleosid Obrázek je převzat z učebnice: Devlin, T. M. (editor): Textbook of Biochemistry with Clinical Correlations, 4th ed. Wiley‑Liss, Inc., New York, 1997. ISBN 0‑471‑15451‑2

Ribonukleotidy * N-glykosidová vazba * esterová vazba * anhydridové vazby Obrázek je převzat z učebnice: Devlin, T. M. (editor): Textbook of Biochemistry with Clinical Correlations, 4th ed. Wiley‑Liss, Inc., New York, 1997. ISBN 0‑471‑15451‑2

Rozdělení nukleotidů purinové: obsahují adenin, guanin, hypoxanhin nebo xanthin pyrimidinové: obsahují cytosin, uracil nebo thymin ribonukleotidy (obsahují ribózu) deoxyribonukleotidy (obsahují deoxyribózu) vznikají redukcí ribonukleosid difosfátů (NADPH)

Vlastnosti nukleotidů silná absorpce UV záření (260 nm) puriny méně stabilní v kyselém prostředí než pyrimidiny polární koncové fosfátové skupiny názvy: adenylát nebo kyselina adenylová,...

Distribuce nukleotidů v buňkách Z nukleotidů má v buňkách nejvyšší koncentraci ATP Distribuce se mění podle typu buněk V buňkách převažují nukleosid-5´- trifosfáty V hypoxických buňkách převládá koncentrace nukleosid-5´- di a monofosfátů Ribonukleotidy jsou ve velkém nadbytku oproti 2´- deoxyribonukleotidům, kromě období DNA replikace Celková koncentrace nukleotidů v normální buňce je konstantní AMP + ADP + ATP = konst. Energetický stav buňky lze popsat ATP/(ATP+ADP+AMP) Platí i pro NADH a NAD+ - důsledek přísné regulace

Kde mají původ nukleotidy potřebné v metabolismu A) V potravě B) Syntéza de novo C) Šetřící (salvage) reakce jsou hlavním zdrojem nukleotidů pro syntézu DNA, RNA a enzymových kofaktorů. Zdrojem ribosa-5-P je pentózový cyklus

Nukleové kyseliny z potravy se hydrolyzují extracelulárně NK uvolněné z nukleoproteinů jsou v trávicím traktu odbourány nukleázami (ribo-,deoxyribo- ) a polynukleotidázami na nukleosidy, které jsou buď resorbovány nebo dále degradovány střevní fosforylázou na purinové a pyrimidinové baze. Purinové baze se oxidují na kyselinu močovou, která se vstřebá a posléze vyloučí močí. Puriny a pyrimidiny z potravy člověk nepotřebuje, nevestavují se do metabolismu. Parenterálně podané látky se využijí v metabolismu, vestavují se do metabolismu

Nukleotidy v metabolismu 1) energetický metabolismus ATP - hlavní biologický přenašeč volné energie – „energetická konzerva“ (30 kJ/mol / odštěpení fosfátu) fosfotransferasové reakce (kinasy) svalová kontrakce, aktivní transport 2) monomerní jednotky RNA a DNA substráty pro syntézu: nukleosidtrifosfáty

Cyklický adenosinmonofosfát (cAMP) 3) mediátory metabolických procesů cAMP, cGMP („druhý posel“) Cyklický adenosinmonofosfát (cAMP) Obrázek převzat z http://www.benbest.com/health/cycAMP.gif (leden 2008)

4) součásti koenzymů NAD+, NADP+, FAD, CoA Obrázky převzaty z http://lxyang.myweb.uga.edu/bcmb8010/pic/NAD+.gif a http://oregonstate.edu/instruct/bb450/stryer/ch14/Slide26.jpg (leden 2008)

- regulace klíčových enzymů metabolických drah 5) aktivace intermediátů UDP-Glc, GDP-Man CDP-cholin, ethanolamin, diacylglycerol SAM  methylace PAPS  sulfatace 6) allosterické efektory - regulace klíčových enzymů metabolických drah

3´-fosfoadenosin-5´-fosfosulfát (PAPS) přenáší sulfát do substrátu při konjugačních reakcích (sulfatace) Obrázek je převzat z http://web.indstate.edu/thcme/mwking/amino-acid-metabolism.html (leden 2007)

PRDP = 5-fosforibozyl-1-difosfát ! společný substrát pro syntézu ! purinů i pyrimidinů Obrázek převzat z http://ead.univ-angers.fr/~jaspard/Page2/COURS/2N2NH3aaetUree/2Figures/9AAaromatiques/8PRPP.gif (leden 2008)

PRDP = 5-fosforibozyl-1-difosfát jeho syntéza je klíčovou reakcí pro biosyntézu nukleotidů PRDP-syntetáza je cílem zpětnovazebné inhibice nukleosid di- a trifosfáty prekurzor: * ribóza-5-fosfát (pentózový c.) * ribóza-1-fosfát (fosforolýza nukleotidů)

využití: PRPP = PRDP regulace syntézy nukleotidů substrát pro syntézu nukleotidů PRPP = PRDP Obrázek je převzat z učebnice: Devlin, T. M. (editor): Textbook of Biochemistry with Clinical Correlations, 4th ed. Wiley‑Liss, Inc., New York, 1997. ISBN 0‑471‑15451‑2

Syntéza purinových nukleotidů de novo (nová výstavba purinového kruhu) PRDP + glutamine→ 5-fosforibosylamin + glutamát + PPi (de novo) šetřící reakce (syntéza z bazí a nukleosidů) mnohem méně energeticky náročné než de novo syntéza PRPP + hypoxanthin (guanin)→IMP (GMP) + PPi Enzym:hypoxanthin-guanin fosforibosyltransferasa PRPP + adenin → AMP + PPi Enzym: adeninfosforibosyltransferasa (APRT)

Syntéza purinových nukleotidů de novo velká spotřeba energie (ATP) cytoplazma buněk různých tkání, hlavně játra substráty: * 5-fosforibozyl-1-difosfát (= PRDP = PRPP) * aminokyseliny (Gln, Gly, Asp) * deriváty tetrahydrofolátu, CO2 koenzymy: * tetrahydrofolát (= kys.listová) * NAD+

Folát je vitamin – člověk ho nedokáže syntetizovat Bakterie folát syntetizují: sulfonamidy jsou analoga PABA → antibakteriální účinek Obrázek převzat z http://www.dentistry.leeds.ac.uk/biochem/MBWeb/mb2/part1/aacarbon.htm (leden 2008)

Folát v metabolismu Obrázek převzat z http://www.prema-eu.org/folatepathway/fig1.gif (leden 2008)

Syntéza purinových nukleotidů de novo významné meziprodukty: 5´-fosforibozylamin inozinmonofosfát (IMP) produkty: nukleosidmonofosfáty (AMP, GMP) mezipřeměna purinových nukleotidů: přes IMP (inosinmonofosfát: báze = hypoxanthin)

Syntéza purinových nukleotidů de novo

IMP AMP GMP Obrázek je převzat z učebnice: Devlin, T. M. (editor): Textbook of Biochemistry with Clinical Correlations, 4th ed. Wiley‑Liss, Inc., New York, 1997. ISBN 0‑471‑15451‑2

Obrázek je převzat z učebnice: Devlin, T. M Obrázek je převzat z učebnice: Devlin, T. M. (editor): Textbook of Biochemistry with Clinical Correlations, 4th ed. Wiley‑Liss, Inc., New York, 1997. ISBN 0‑471‑15451‑2

Regulace syntézy purinových nukleotidů

Syntéza pyrimidinových nukleotidů de novo (nová výstavba pyrimidinového kruhu) šetřící reakce (syntéza z bází nebo nukleosidů) substráty: a) * báze (kromě cytosinu) * PRDP b) * ribonukleosidy * ATP

Syntéza pyrimidinových nukleotidů de novo kromě jedné reakce probíhá v cytoplazmě (dihydroorotátdehydrogenáza je v mitochondrii) substráty: * karbamoylfosfát (Gln,CO2,2 ATP ) * aspartát * PRDP * derivát THF (pouze pro thymin) Karbamoylfosfát vzniká i při syntéze MOČOVINY (pouze v mitochondriích hepatocytů)

Syntéza pyrimidinových nukleotidů de novo významné meziprodukty: * kyselina orotová (pyrimidinový skelet) * orotidinmonofosfát (OMP) * uridinmonofosfát (UMP) = výchozí látka pro syntézu dalších nukleotidů produkty: * cytidintrifosfát (z UTP) * deoxythimidinmonofosfát (z dUMP)

Syntéza pyrimidinových nukleotidů de novo Obrázek převzat z http://web.indstate.edu/thcme/mwking/nucleotide-metabolism.html (leden 2007)

Obrázek je převzat z učebnice: Devlin, T. M Obrázek je převzat z učebnice: Devlin, T. M. (editor): Textbook of Biochemistry with Clinical Correlations, 4th ed. Wiley‑Liss, Inc., New York, 1997. ISBN 0‑471‑15451‑2

Syntéza thymidinmonofosfátu Obrázek převzat z knihy Devlin, T. M. (editor): Textbook of Biochemistry with Clinical Correlations, 4th ed. Wiley‑Liss, Inc., New York, 1997. ISBN 0‑471‑15451‑2

Syntéza 2´-deoxyribonukleotidů

Regulace syntézy pyrimidinových nukleotidů Obrázek převzat z http://www.med.unibs.it/~marchesi/pyrimidine_synth_reg.gif (leden 2008)

Regulace syntézy nukleotidů regulační enzym aktivace inhibice glutamin-PRDP-amidotransferáza (puriny) PRDP IMP, GMP, AMP (alosterická inhibice) karbamoylfosfát syntetáza II = cytoplazmatická (pyrimidiny) ATP UTP

Odbourávání purinů a pyrimidinů z potravy: málo využívané k resyntéze endogenní: enzymy * nukleázy (štěpí nukleové kyseliny) * nukleotidázy (štěpí nukleotidy) * nukleosidfosforylázy (š. nukleosidy) * deamináza (adenosin) * xanthinoxidáza (hypoxanthin, xanthin) inhibována allopurinolem (lék Milurit)

Odbourávání purinů kyselina močová H Obrázek převzat z http://www.med.unibs.it/~marchesi/purine_degradation.gif (leden 2008) kyselina močová

Kyselina močová keto a enol forma soli kyseliny močové = uráty (močany) při pH krve existuje ve formě mononatrium-urátu

Hyperurikémie = zvýšená koncentrace kyseliny močové (KM) v krvi Příčiny: Porucha vylučování KM Zvýšená tvorba KM a) nevyvážená strava b) porucha recyklace purinových bazí Obrázek převzat z knihy: Color Atlas of Biochemistry / J. Koolman, K.H.Röhm. Thieme 1996. ISBN 0-86577-584-2

Dědičné příčiny hyperurikémie ribóza-5-fosfát 5-fosforibozyl-1-pyrofosfát AMP IMP GMP inozin guanozin adenozin adenin hypoxanthin guanin xanthin kyselina močová HGPRT APRT PRPP-amidotransferáza XO + – Leschův-Nyhanův syndrom HGPRT Snímek převzat z přednášky prof. J. Racka / Kyselina močová – významný metabolit a antioxidant; Novinky v klinické biochemii, Nové Hrady 13.-15.10.2006

Odbourávání pyrimidinů

SOUHRN: puriny → NH3, kyselina močová - má antioxidační vlastnosti (částečně vylučována močí; poruchy: hyperurikémie, dna) normální hodnoty: sérum 220 – 420 µmol/l (muži) 140 – 340 µmol/l (ženy) moč 0,48 – 5,95 mmol/l pyrimidiny: C, U → -alanin, CO2, NH3 T → -aminoizobutyrát, CO2, NH3 volné radikály Obrázky převzaty z http://www.uni-koeln.de/med-fak/biochemie/biomed/versuche/v07/abb05.gif a http://www.healerpatch.com/images/gout.jpg (leden 2008)

Hlavní rozdíly metabolismu purinů a pyrimidinů puriny pyrimidiny tvorba N-glykosidové vazby v 1. kroku syntézy (syntéza začíná na PRDP) nejprve se syntetizuje pyrimidinový kruh lokalizace biosyntézy cytoplazma cytoplazma + 1 enzym v mitochondrii produkty odbourávání kyselina močová (špatně rozpustná v H2O), NH3 CO2, NH3, -AMK (dobře rozpustné v H2O)