11/20141 Vlastnosti a tvorba dynamického modelu Obsah předmětu: Počítačová podpora řízení Předmět : Počítačová podpora řízení K126 POPR Obor : E ZS, 2014,

Slides:



Advertisements
Podobné prezentace
Přednáška č. 3 Normalizace dat, Datová a funkční analýza
Advertisements

NK 1 – Konstrukce – část 2A Přednášky: Doc. Ing. Karel Lorenz, CSc.,
06/2003Přednáška č. 11 Dynamický model stárnutí objektu (části objektu) – základní popis Předmět: Modelování v řízení MR 11 (Počítačová podpora) Obor C,
Základní zadání POPR (2009 ZS) 1.základní informace k sestavení modelu objektu 2.pro model použijte stávající projekt z výuky nebo jiný dostupný projekt.
10/2012Přednáška č. 21 Sestavení struktury modelu stárnutí objektu Obsah předmětu: Počítačová podpora řízení Předmět : Počítačová podpora řízení K126 POPR.
11/20141 Vyhodnocení rizikového proces Přednáška k předmětu: Počítačová podpora řízení Předmět : Počítačová podpora řízení K126 POPR Obor : E ZS, 2014,
10/20131 Vztahy řídicích zásahů Obsah předmětu: Počítačová podpora řízení Předmět : Počítačová podpora řízení K126 POPR Obor : E ZS, 2013, K126 EKO Přednášky/cvičení.
Modelování a simulace MAS_02
10/20131 Interakce a řízení kvantifikovaného modelu Obsah předmětu: Počítačová podpora řízení Předmět : Počítačová podpora řízení K126 POPR Obor : E ZS,
Rekapitulace obsahu modelu Předmět: Počítačová podpora řízení K126 POPR Obor E ZS, 2011, K126 EKO Přednášky/cvičení : doc.Ing. P. Dlask, Ph.D. Cvičení.
Dokumentace informačního systému
7. Typ soubor Souborem dat běžně rozumíme uspořádanou množinu dat, uloženou mimo operační paměť počítače (na disku). Pascalský soubor je abstrakcí skutečného.
11/2011Přednáška č. 31 Řízení sestaveného modelu Obsah předmětu: Počítačová podpora řízení Předmět : Počítačová podpora řízení K126 POPR Obor : E ZS, 2011,
Metody Finančního řízení firmy Tomáš Sobotka A09B0008PMAB.
Databázové modelování
Číslo projektu CZ.1.07/1.5.00/ Číslo materiálu VY_32_INOVACE_ 007 Název školy Gymnázium, Tachov, Pionýrská 1370 Autor Mgr.Stanislava Antropiusová.
10/2003Přednáška č. 21 Sestavení struktury modelu stárnutí objektu (části objektu) Předmět: Modelování v řízení MR 11 (Počítačová podpora) Obor C, Modul.
10/2007Přednáška č. 21 Modelované procesy (parametrizace) Matematické modelování (MM) Předmět : Matematické modelování ZS, 2007 Přednášky/cvičení : Doc.
EKO VY_32_INOVACE_EKO_12 MARKETINGOVÉ ŘÍZENÍ. Autor: Ing. Hana Motyčková „Autor je výhradní tvůrce materiálu.“ Datum vytvoření: Klíčová slova:
Nauka o podniku Investice.
Řízení procesů modelovaných řešení Předmět : Počítačová podpora řízení K126 POPR Obor : E ZS, 2012, K126 EKO Přednášky/cvičení : Doc. Ing. P. Dlask, Ph.D.
12/2003Přednáška č. 51 Vyhodnocení změny struktury modelu Předmět: Modelování v řízení MR 11 (Počítačová podpora) Obor C, Modul M8 ZS, 2003, K126 EKO Předn./Cvič.:
y.cz Název školyStřední odborná škola a Gymnázium Staré Město Číslo projektuCZ.1.07/1.5.00/ AutorMgr. Roman Chovanec Název šablonyIII/2.
12/2011Přednáška č. 51 Obsah předmětu: Počítačová podpora řízení Předmět : Počítačová podpora řízení K126 POPR Obor : E ZS, 2011, K126 EKO Přednášky/cvičení.
Zpracoval :Ing. Petr Dlask, Ph.D. Pracoviště :Katedra Ekonomiky a řízení stavebnictví ČVUT v Praze Adresa :Thákurova 7, Praha 6, Dejvice Optimalizace.
12/20131 Modeling Road Review Obsah předmětu: Počítačová podpora řízení Předmět : Počítačová podpora řízení K126 POPR Obor : E ZS, 2013, K126 EKO Přednášky/cvičení.
12/20141 Kvanti/Kvalifikované řízení modelu Obsah předmětu: Počítačová podpora řízení Předmět : Počítačová podpora řízení K126 POPR Obor : E ZS, 2014,
10/2011Přednáška č. 21 Sestavení struktury modelu stárnutí objektu Obsah předmětu: Počítačová podpora řízení Předmět : Počítačová podpora řízení K126 POPR.
9/2010Přednáška č. 11 Tvorba modelu – ověření modelem.
Matematické modelování Přednáška I. DS-ZS2007 Ing. Marek Mihola
10/20131 Tvorba systému na podporu řízení Obsah předmětu: Počítačová podpora řízení Předmět : Počítačová podpora řízení K126 POPR Obor : E ZS, 2013, K126.
Krycí list. Komentář - Popis objektu Prostorové parametry.
Modifikovaný dynamický model pro řešení technicko-ekonomických úloh s použitím rizik a nejistot Modifikovaný dynamický model pro řešení technicko-ekonomických.
11/2011Přednáška č. 41 Obsah předmětu: Počítačová podpora řízení Předmět : Počítačová podpora řízení K126 POPR Obor : E ZS, 2011, K126 EKO Přednášky/cvičení.
12/2009Přednáška č. 61 Obsah předmětu: Počítačová podpora řízení Finalizace modelu Předmět : Počítačová podpora řízení K126 POPR Obor : E ZS, 2009, K126.
11/2003Přednáška č. 41 Regulace výpočtu modelu Předmět: Modelování v řízení MR 11 (Počítačová podpora) Obor C, Modul M8 ZS, 2003, K126 EKO Předn./Cvič.:
Hodnocení výstupů dynamických modelů Obsah předmětu: Počítačová podpora řízení Předmět : Počítačová podpora řízení K126 POPR Obor : E LS, 2015, K126 EKO.
ZÁSADY KONCIPOVÁNÍ LOGISTICKÝCH SYSTÉMŮ KAPITOLA 5: VZTAH STRATEGIE PODNIKU A LOGISTICKÉHO PLÁNOVÁNÍ, CÍLE, METODY A NÁSTROJE PLÁNOVÁNÍ, POSTUPOVÉ KROKY.
9/2009Přednáška č. 11 Modifikovaný Dynamický Model v aplikaci výuky POPR Předmět: Počítačová podpora řízení K126 POPR Obor E ZS, 2008, K126 EKO Přednášky/cvičení.
9/2009Přednáška č. 11 Modifikovaný Dynamický Model v aplikaci výuky POPR Předmět : Počítačová podpora řízení K126 POPR Obor E ZS, 2009, K126 EKO Přednášky/cvičení.
9/2011Přednáška č. 11 Modifikovaný Dynamický Model v aplikaci výuky POPR Předmět: Počítačová podpora řízení K126 POPR Obor E ZS, 2011, K126 EKO Přednášky/cvičení.
10/2010Přednáška č. 21 Sestavení struktury modelu stárnutí objektu Obsah předmětu: Počítačová podpora řízení Předmět : Počítačová podpora řízení K126 POPR.
Rekapitulace obsahu Obsah předmětu: Počítačová podpora řízení Předmět : Počítačová podpora řízení K126 POPR Obor : E LS, 2015, K126 EKO Přednášky/cvičení.
11/2010Přednáška č. 41 Obsah předmětu: Počítačová podpora řízení Předmět : Počítačová podpora řízení K126 POPR Obor : E ZS, 2008, K126 EKO Přednášky/cvičení.
10/2010Přednáška č. 31 Sestavení výpočtu modelu Obsah předmětu: Počítačová podpora řízení Předmět : Počítačová podpora řízení K126 POPR Obor : E ZS, 2010,
10/2009Přednáška č. 31 Sestavení výpočtu modelu Obsah předmětu: Počítačová podpora řízení Předmět : Počítačová podpora řízení K126 POPR Obor : E ZS, 2009,
Vysoká škola technická a ekonomická v Českých Budějovicích
FUTURE - GOING TO, FUTURE - USING PRESENT CONTINUOUS, FUTURE PLANS Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology.
Projekt: Praktický průvodce ekonomikou aneb My se trhu nebojíme! Reg. č.: CZ.1.07/1.1.34/ Nové trendy v investování.
Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/ III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: English Grammar.
Rekapitulace obsahu Obsah předmětu: Počítačová podpora řízení Předmět : Počítačová podpora řízení K126 POPR Obor : E LS, 2016, K126 EKO Přednášky/cvičení.
11/2009Přednáška č. 41 Obsah předmětu: Počítačová podpora řízení Předmět : Počítačová podpora řízení K126 POPR Obor : E ZS, 2008, K126 EKO Přednášky/cvičení.
1 Change Management Přednáška k předmětu: Počítačová podpora řízení Předmět : Počítačová podpora řízení K126 PPR1 Obor : E LS, 2016, K126 EKO Přednášky/cvičení.
10/2009Přednáška č. 21 Sestavení struktury modelu stárnutí objektu Obsah předmětu: Počítačová podpora řízení Předmět : Počítačová podpora řízení K126 POPR.
GE - Vyšší kvalita výuky
Obsah a úvod do předmětu: Počítačová podpora řízení
Použití software MDM pro tvorbu/ověření strategie Ú/O
Model x Proces Přednáška k předmětu: Počítačová podpora řízení
Dynamický model Přednáška k předmětu: Počítačová podpora řízení
Řízení v dynamickém modelu
Realizace řízení modelu
Finalizace modelu Obsah předmětu: Počítačová podpora řízení
Reporting as a Part of DSS
PROJEKT SYSTÉMU ŘÍZENÍ PODNIKU ZÁKLADNÍ POŽADAVKY A DOPORUČENÍ
Návrh strategie při správě majetku
Simulace řízení při správě majetku
Modifikovaný Dynamický Model v aplikaci výuky POPR
Tvorba dynamického modelu
Účetní schémata MS Dynamics NAV RTC-základy
Dynamické procesy v řízení Definice procesů v řízení
Transkript prezentace:

11/20141 Vlastnosti a tvorba dynamického modelu Obsah předmětu: Počítačová podpora řízení Předmět : Počítačová podpora řízení K126 POPR Obor : E ZS, 2014, K126 EKO Přednášky/cvičení : Doc. Ing. P. Dlask, Ph.D.

11/20142 Obsah 1.Rekapitulace 2.Vlastnosti dynamického modelu 3.Sestavení dynamického modelu 4.Zkouškové otázky 5.Praktická aplikace (založení, oživení) 1.Rekapitulace 2.Vlastnosti dynamického modelu 3.Sestavení dynamického modelu 4.Zkouškové otázky 5.Praktická aplikace (založení, oživení)

11/20143 Cíl úlohy/modelu Sestavit dynamický model stárnutí objektu …degradační model části objektu Verifikace modelu Kalibrace modelu Aplikace řízení Ověřování strategií Sestavit dynamický model stárnutí objektu …degradační model části objektu Verifikace modelu Kalibrace modelu Aplikace řízení Ověřování strategií

11/20144 ??? Vývoj standardu konstrukčních prvků v čase (opotřebení) Fasáda Výplně otvorů Co chci zjistit?

Stavební objekt v čase /20145

Modelář + Počítač Realita Formalizace Verifikace Formální model Výsledky Kalibrace Vstupy Proces tvorby modelu (Circle of Model Life) dále viz Modelová při řízení, str /20146 Phases of the model creation 1.Intelligence phase 2.Design phase 3.Running phase Phases of the DSS 1.Intelligence phase 2.Design phase 3.Choice phase

11/20147 Steps in model creation 1. What are we looking for? some observations about the real world, and gather all the relevant information. 2. What do we want to know? After you have decided on the initial scope of the problem, all available relevant data should be identified. 3. What do we already know from experiments and/or literature? It may be possible that someone already created a mathematical model of the process or problem that you are trying to solve. 4. How should we look at his model? Create as many diagrams of what is actually happening with the process that you are trying to model. 5. What assumptions can we make to eliminate some of the variables? Create a list of all of the assumptions that you will use to clarify the scope of the model. 6. What will our model predict? Start with a simple model, and then add complexity as needed. 1. What are we looking for? some observations about the real world, and gather all the relevant information. 2. What do we want to know? After you have decided on the initial scope of the problem, all available relevant data should be identified. 3. What do we already know from experiments and/or literature? It may be possible that someone already created a mathematical model of the process or problem that you are trying to solve. 4. How should we look at his model? Create as many diagrams of what is actually happening with the process that you are trying to model. 5. What assumptions can we make to eliminate some of the variables? Create a list of all of the assumptions that you will use to clarify the scope of the model. 6. What will our model predict? Start with a simple model, and then add complexity as needed.

11/20148 Steps in model creation 7. What are the input & output variables? Create a list of all of your input and output variables. 8. Are the results valid? Validate your model with new experimental data or data that you have not used to create the model. Identify tests that can validate the model. 9. Constantly test your model and update your equations based upon new data and information. 7. What are the input & output variables? Create a list of all of your input and output variables. 8. Are the results valid? Validate your model with new experimental data or data that you have not used to create the model. Identify tests that can validate the model. 9. Constantly test your model and update your equations based upon new data and information. Source: … mathematical-modeling/

11/20149 Another Steps in Model Creation 1.Gather information 2.Make a strategy 3.Conduct a thorough literature review 4.Learn Data Handling So think carefully about how you are going to handle missing data. 5.Begin with a simple model. 6.Identify the parameters of the equations and develop a plan how to estimate the parameters from the data. 7.Validate your model against a data set that you have not used to build the model. 8.Constantly test your model and update your equations based on new data and information. 1.Gather information 2.Make a strategy 3.Conduct a thorough literature review 4.Learn Data Handling So think carefully about how you are going to handle missing data. 5.Begin with a simple model. 6.Identify the parameters of the equations and develop a plan how to estimate the parameters from the data. 7.Validate your model against a data set that you have not used to build the model. 8.Constantly test your model and update your equations based on new data and information.

11/ Classifying Mathematical Models 1. Empirical – Non empirical This model is based upon experimental results. 2. Dynamic or static realistic approach, consider time or space in real time 3. Deterministic or probabilistic These models perform the same way for a given set of conditions. In a probabilistic model, randomness is present and must be accounted for by probability distributions. 4. Qualitative or Quantitative 1. Empirical – Non empirical This model is based upon experimental results. 2. Dynamic or static realistic approach, consider time or space in real time 3. Deterministic or probabilistic These models perform the same way for a given set of conditions. In a probabilistic model, randomness is present and must be accounted for by probability distributions. 4. Qualitative or Quantitative Source: … mathematical-modeling/

11/ Vlastnosti dynamického modelu 1.Obsahuje prvky modelu 2.Obsahuje vazby mezi prvky 3.Obsahuje počáteční podmínky 4.Obsahuje řídicí mechanismy (podporu řízení) 5.Poskytuje informace o budoucím chování modelu 6.Nabízí analýzu chování modelu 1.Obsahuje prvky modelu 2.Obsahuje vazby mezi prvky 3.Obsahuje počáteční podmínky 4.Obsahuje řídicí mechanismy (podporu řízení) 5.Poskytuje informace o budoucím chování modelu 6.Nabízí analýzu chování modelu

11/ Interakce prvků Při sestavování struktury modelovaného problému se používají dva základní typy interakcí: 1.kvantifikovatelné interakce a ij, 2.absolutní vazby a ij. Při ohodnocování interakcí je výhodné, když jejich komponenty jsou převedeny na jedinou jednotku (objemovou, finanční, hmotnou, bezrozměrnou, délkovou a pod.). Pak je celá úloha z hlediska zadání konzistentní a stejně takové budou i poskytované výsledky propočtu. Vlivy mezi dvěma prvky X i a X j, které lze popsat hmotnými toky, jsou jednodušším případem při ohodnocení intenzity interakce. Pohybujeme se zde v oblasti technických jednotek, jejichž ekvivalentem je hodnotící stupnice. Správnost ohodnocení je dána pouze úrovní znalostí hodnotícího subjektu o daném ovlivňování. Pokud řešitel není schopen vyčíslit intenzitu vlivů a ij jednoho prvku na druhý je odkázán na sestavení stupnice absolutního hodnocení interakcí, kterou může vytvořit na základě svých zkušeností s danou problematikou. dále viz Modelování při řízení, str. 44

Při sestavování struktury modelu se vychází z předpokladu, že mezi každými dvěma oddělenými objekty dynamického procesu (DP) může existovat jistá interakce. V technicko-ekonomických úlohách toto pravidlo platí pouze omezeně a mělo by spíše znít: Každé dva správně vybrané prvky DP se přímo ovlivňují. Ani to však nemusí být ve všech případech vhodné pravidlo pro popisování skutečnosti. U některých prvků vazba může na první pohled zcela jistě existovat, ale řešitel nemusí být schopen jejího ohodnocení, popř. se mohou v úloze vyskytnout prvky mezi kterými nebude patrná vazba nebo nebude vůbec vhodné mezi tyto prvky vůbec vazbu umísťovat. Zápisy interakcí mezi jednotlivými prvky umožňuje přehledně popsat maticová symbolika. Pozice a ij takové matice A jsou právě zmiňovanými interakcemi mezi jednotlivými prvky modelu. Objektem zde rozumíme prvek modelu, který svou existencí a funkčností přímo nebo zprostředkovaně ovlivňuje jiný prvek modelu. 11/ Interakce prvků dále viz Modelování při řízení, str. 46 X1X1 X2X2 Polarita vazby (pozitivní, negativní, neutrální) Prvek modelu s verbálním (věcným) popisem Směr působení interakce a 21 X 1  X 2

11/ Teorie výpočtu modelu Stárnutí konstrukce popisuje degradační nelineální model. Prvky modelu označme jako X i Spočtené standardy prvků v čase označme jako X i (t) Interakční matice prvků je označena A Základní symbolika chování vytvářené změny je dána Počáteční podmínka pro výpočet je definována jako Nový standard prvku vychází z předchozího jako Interakce jsou realizovány ze sloupců na řádky matice A Diagonální pozice v matici má specifickou úlohu autoregenerace nebo autodegradace (prvek bude stárnout ikdyž na něho nebude působit žádný jiný vliv). také viz Modelování při řízení, str. 55

11/ Intenzita, polarita dále viz Modelování při řízení, str. 44 Standard Čas0 ++A 1 +A 1 --A 1 -A 1 Působící negativní vlivy Působící pozitivní vlivy Pozitivní polarita Negativní polarita

11/ Expertní ohodnocení interakce Po sestavení schématu modelu a správném určení struktury vazeb mezi prvky je třeba správně zvolit poměrové stupnice při ohodnocování interakcí. Propočet je schopen akceptovat vstupy pro ohodnocení vazeb v rozsahu  -1;1 . Každou hodnocenou interakci je proto zapotřebí převést na normovanou hodnotu z tohoto intervalu. V případě kvantifikovatelných vazeb je dále výhodné převést hodnotící kritérium na stejné jednotky. Každá vazba a ij v interakční matici prvků A by měla mít při zpracovávání svůj verbální popis, svoji legendu, sloužící k lepšímu náhledu na spolupůsobení. dále viz Modelování při řízení, str. 47 Expertní ohodnocení -vyjadřuje kvalitativní odhad odborníka -hodnotící interval  -1;1  -v degradačním modelu využít interval  -1;0  -bez vnějších zásahů musí docházet k degradaci (poklesu standardu) -hodnoty musí být poměrově vyvážené -hodnoty budou upravovány v rámci kalibrace modelu ==> Výsledkem je interakční matice prvků modelu Expertní ohodnocení -vyjadřuje kvalitativní odhad odborníka -hodnotící interval  -1;1  -v degradačním modelu využít interval  -1;0  -bez vnějších zásahů musí docházet k degradaci (poklesu standardu) -hodnoty musí být poměrově vyvážené -hodnoty budou upravovány v rámci kalibrace modelu ==> Výsledkem je interakční matice prvků modelu Každá hodnocená expertní interakce modelu bude obsahovat atributy: 1.Definice prvků interakce 2.Maticový popis interakce ( a ij ) 3.Verbální popis interakce 4.Hodnota interakce Každá hodnocená expertní interakce modelu bude obsahovat atributy: 1.Definice prvků interakce 2.Maticový popis interakce ( a ij ) 3.Verbální popis interakce 4.Hodnota interakce

11/ Praktické důvody

11/ ??? Motivace Proč to dělám? Na co to dělám? K čemu mi to je? Co chci získat? Jak toho dosáhnout? Čeho chci dosáhnout? Co je cílem? Vůbec nevím co dělám… O co se snažím… Proč to dělám? Jak toho dosáhnout? Co je cílem? ???

11/ Proč to dělám? Popisujeme (modelujeme, řídíme) reálné procesy. Jak toho dosáhnout? Prostřednictvím matematického aparátu. Co je cílem? Zjištění budoucího vývoje. Odstranění neřízeného stavu. Motivace

11/ objekt hromadných garáží stání - zásahy běžné údržby - chápány jako podmíněné nefunkčností konstrukce - blíží se zásah obnovy - není jasný horizont (5,10 let) - není jasná finanč. náročnost --> chybí model řízení 90-tá léta Příklad z praxe 2012

11/ Sestavení dynamického modelu Kde je ten život ztracený v žití? Kde je ta moudrost ukrytá ve vědomostech? Kde jsou ty vědomosti schované v informacích? T. S. Eliot (americký básník, 1934) Kde je ten život ztracený v žití? Kde je ta moudrost ukrytá ve vědomostech? Kde jsou ty vědomosti schované v informacích? T. S. Eliot (americký básník, 1934)

11/ Základní popis úlohy obsahuje Popis objektu Popis konstrukce Technické charakteristiky Plošné členění Výškové členění (podlažnost) Funkční členění Celkové pořizovací nákladové částky (alternativní skladba) Praktická aplikace Zpracované části doplnit: Technologické parametry (popis) Schématická dokumentace (zakreslení) Funkční a výnosové parametry (popis + výpočet) Členění na konstrukční prvky Nákladové položky konstrukčních prvků Modelové schéma objektu Zpracované části doplnit: Technologické parametry (popis) Schématická dokumentace (zakreslení) Funkční a výnosové parametry (popis + výpočet) Členění na konstrukční prvky Nákladové položky konstrukčních prvků Modelové schéma objektu

11/ Příklad popisu objektu Řešený objekt je proveden jako železobetonový montovaný skelet s výplňovým zdivem. Nachází se v intravilánu obce … s přilehlými parkovacími místy a vytvořenými přístupovými komunikacemi podle přiložené schematické půdorysné situace. Jedná se o budovu ve stávající zástavbě. Svislou nosnou konstrukci tvoří železobetonové prefabrikované sloupy. Vodorovná nosná konstrukce je provedena ze železobetonových stropních panelů. Základová konstrukce je provedena ze železobetonových monolitických patek. Výplňové obvodové zdivo je tvořeno z keramických tvárnic. Obvodový plášť objektu je zateplen sendvičovou omítkou typu TERRANOVA se stěrkovým povrchem. Vnější výplně otvorů jsou provedeny z plastových oken se zdvojeným zasklením vakuovými skly. Vnitřní výplně otvorů tvoří z části dřevěné, kovové a skleněné dveřní systémy. Objekt je v kancelářských provozech vybaven napojením na vzduchotechnické zařízení. Vodovodní, elektrické (silnoproudé a slaboproudé), kanalizační a plynovodní vedení je napojeno na veřejné rozvody sítí. Uvedený popis stručně uvádí jednotlivé použité technologie v objektu, od kterých se bude odvíjet členění na jednotlivé konstrukční prvky. Každý zpracovatel v roli správce objektu se může soustředit na různé části objektu a dělit je dále na konstrukční prvky s různou podrobností. Pro naše potřeby zpracování bude objekt rozdělen na konstrukční prvky, u nichž se budou určovat jejich atributy potřebné pro výpočet podle dalšího postupu. Nákladová část projektu (objektu) může vycházet ze zpracované feasibility studie případně nabídkového rozpočtu. Feasibility studie zde není uváděna a v některých případech je třeba sáhnout k expertním odhadům, protože přesnější údaje nejsou například dostupné nebo nejsou pro daný objekt zpracovány. Praktická aplikace

11/ Prostorové a výnosové parametry (ilustrační příklad) Praktická aplikace

11/ Schéma objektu (ilustrační příklad) Praktická aplikace

11/ Rozčlenění objektu na jednotlivé konstrukční prvky (resp. prvky modelu) s pořizovacími a udržovacími náklady 1. Základy/Založení 2. Betonový skelet 3. Fasáda/Okna 4. Zastřešení 5. Stěny nosné/nenosné 6. Technické vybavení 7. Instalace 8. Finanční náročnost 1. Základy/Založení 2. Betonový skelet 3. Fasáda/Okna 4. Zastřešení 5. Stěny nosné/nenosné 6. Technické vybavení 7. Instalace 8. Finanční náročnost (ilustrační příklad) Praktická aplikace

11/ Tabulkové členění nákladů (ilustrační příklad)

11/ Schéma modelu I (ilustrační příklad schémat modelů regionálního rozvoje) dále viz Modelová při řízení, str. 40

11/ Schéma modelu II (ilustrační příklad schémat modelů regionálního rozvoje) dále viz Modelování při řízení, str. 40

11/ Data97.xls

11/ Desatero odevzdání 1.Krycí list (kompletní, vyplněný, název úlohy…) 2.Popis objektu 3.Schéma objektu 4.Hezké schéma objektu 5.Barevné schéma objektu 6.Popsané, komentované, okótované schéma objektu 7.Náklady na konstrukční části (rozpočtová část) 8.Kalkulace příjmů (odhad výnosové části) 9.Vyčíslení údajů [m2, m3, Kč/m2, Kč/m3,…] 10.Definice prvků modelu – schéma modelu 1.Krycí list (kompletní, vyplněný, název úlohy…) 2.Popis objektu 3.Schéma objektu 4.Hezké schéma objektu 5.Barevné schéma objektu 6.Popsané, komentované, okótované schéma objektu 7.Náklady na konstrukční části (rozpočtová část) 8.Kalkulace příjmů (odhad výnosové části) 9.Vyčíslení údajů [m2, m3, Kč/m2, Kč/m3,…] 10.Definice prvků modelu – schéma modelu

11/ Kdo poruší desatero…? 1.Název souboru (Majer_dynamicky_model_starnuti_objektu-zakladni_popis.xls ) 2.Čísla psaná do textového pole 3.Skenovaný projekt v sešitu 4.Chybějící údaje [m2, m3, Kč/m2, Kč/m3,…] 5.Nereálné údaje ad 4) 6.Přetékající/nečitelný text 7.Pravopis…! 8.Situace nemá návaznost na okolí 9.Přehledná situace 10.Konstanty ve vzorcích 1.Název souboru (Majer_dynamicky_model_starnuti_objektu-zakladni_popis.xls ) 2.Čísla psaná do textového pole 3.Skenovaný projekt v sešitu 4.Chybějící údaje [m2, m3, Kč/m2, Kč/m3,…] 5.Nereálné údaje ad 4) 6.Přetékající/nečitelný text 7.Pravopis…! 8.Situace nemá návaznost na okolí 9.Přehledná situace 10.Konstanty ve vzorcích

Intermezzo I. Dotazy Naše vědomosti se zvětšují jen díky opravám našich omylů. Karl R. Popper (Sir, filosof, Vídeň, 1969) Naše vědomosti se zvětšují jen díky opravám našich omylů. Karl R. Popper (Sir, filosof, Vídeň, 1969) 11/201433

11/ Sestavení modelu XLSM Postup pro založení a sestavení procedury modulu uvádí VBA.PPT

11/ Základní matematické vazby kde: X j (T) jsou spočtené standardy v dané periodě X j (T+1) jsou spočtené standardy v následující periodě a ij je prvek matice A b ij je prvek matice B

11/ Algoritmizace metody stáhnout z MOODLE ' cyklus pro pocet obdobi (1. obdobi=PocatecniPodminky) For Obdobi = 2 To PocetObdobi - 1 Step 1 ' algoritmizace metody KSIM For i = 1 To Pocetprvku suma1 = 0 suma2 = 0 For j = 1 To Pocetprvku ' aij = ??? ' bij = ??? ' BBij = ??? suma1 = suma1 + (Abs(aij + BBij) - (aij + BBij)) * Sheets("Vysledky").Cells(j, Obdobi - 1) suma2 = suma2 + (Abs(aij + BBij) + (aij + BBij)) * Sheets("Vysledky").Cells(j, Obdobi - 1) Next j ' standard Sheets("Vysledky").Cells(i - 1, Obdobi) = (Sheets("Vysledky").Cells(i - 1, Obdobi - 1)) ^ _ ((1 + 1 / 2 * suma1) / (1 + 1 / 2 * suma2)) ' diference standardu Sheets("Vysledky").Cells(i Pocetprvku + 3, Obdobi - 1) = Sheets("Vysledky").Cells(i - 1, Obdobi) - _ Sheets("Vysledky").Cells(i - 1, AObdobi - 1) Next i Next Obdobi také viz Modelování při řízení, str. 60

11/ ZávěrZávěr Vlastnosti a tvorba dynamického modelu doc. Ing. P. Dlask, Ph.D.