Korelace a elaborace aneb úvod do vztahů proměnných

Slides:



Advertisements
Podobné prezentace
Korelace a regrese Karel Zvára 1.
Advertisements

Použité statistické metody
Cvičení 6 – 25. října 2010 Heteroskedasticita
Lineární regresní analýza Úvod od problému
Statistika schématicky Tomáš Mrkvička. Základy znáte Konfidenční intervaly Porovnání 2 či více výběrů Regresní modely Základy časových řad.
Analytické metody výzkumu
Úvod do regresní analýzy
Regresní analýza a korelační analýza
ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN
Testování hypotéz (ordinální data)
Korelace a regrese síla (těsnost) závislosti dvou náhodných veličin: korelace symetrický vztah obou veličin neslouží k předpovědi způsob (tvar) závislosti.
Analýza dat.
Řízení a supervize v sociálních a zdravotnických organizacích
Základy ekonometrie Cvičení 3 4. října 2010.
Lineární regrese.
Obecný lineární model Fitované hodnoty and regresní residuály
Simultánní rovnice Tomáš Cahlík
Lineární regresní model Statistická inference Tomáš Cahlík 4. týden.
Korelace a elaborace aneb úvod do vztahů proměnných
Lineární regrese.
Praktické využití regresní analýzy Struktura národního hospodářství a znečištění ovzduší v tranzitivních ekonomikách: Případ České republiky Gabriela Jandová.
REGIONÁLNÍ ANALÝZA Cvičení 3 Evropský sociální fond
Lineární regresní analýza
Biostatistika 6. přednáška
Další spojitá rozdělení pravděpodobnosti
Biostatistika 7. přednáška
Test dobré shody Fisherův přesný test McNemar test
Kontingenční tabulky.
Metrologie   Přednáška č. 5 Nejistoty měření.
Teorie psychodiagnostiky a psychometrie
Korelace a elaborace aneb úvod do vztahů proměnných
REGIONÁLNÍ ANALÝZA Cvičení 4 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Název projektu: Kvalitní vzdělání je efektivní investice.
Analýza kvantitativních dat I. Vztahy mezi 3 znaky v kontingenční tabulce - úvod Jiří Šafr jiri.safr(zavináč)seznam.cz poslední aktualizace
2. Vybrané základní pojmy matematické statistiky
Praktikum elementární analýzy dat Třídění 2. a 3. stupně UK FHS Řízení a supervize (LS 2012) Jiří Šafr jiri.safr(zavináč)seznam.cz poslední aktualizace.
8. Kontingenční tabulky a χ2 test
Pearsonův test dobré shody chí kvadrát
Biostatistika 8. přednáška
Jednoduchý lineární regresní model Tomáš Cahlík 2. týden
Korelace.
Biostatistika 1. přednáška Aneta Hybšová
Třídění 2. a 3. stupně: orientační mapa možností bivariátních analýz
Korelace. Určuje míru lineární vazby mezi proměnnými. r < 0
Motivační příklad – 1a Vliv rodičů a prostředí na vývoj mláďat Nejstarší mládě v každém hnízdě měřeno ve věku X dní Vysvětlující údaje: počet mláďat, stáří.
Aplikovaná statistika 2. Veronika Svobodová
1. cvičení
IV..
HYPOTÉZY „Hypotéza není ničím jiným než podmíněným výrokem o vztazích mezi dvěma nebo více proměnnými. Na rozdíl od problému, který je formulován v.
Aplikovaná statistika 2.
Měření v sociálních vědách „Měřit všechno, co je měřitelné, a snažit se učitnit měřitelným vše, co dosud měřitelné není“. (Galileo Galilei)
SPSS a analýza dat Grafy pro prezentaci výzkumu Chyby prezentování dat Custom tables v SPSS.
Základní informace o předmětu1. Přednášející: RNDr. Martin Hála, CSc. katedra matematiky, B105, Další informace a soubory ke stažení.
Základy zpracování geologických dat R. Čopjaková.
… jsou bohatší lidé šťastnější?
Korelace. Určuje míru lineární vazby mezi proměnnými. r < 0
INDUKTIVNÍ STATISTIKA
Korelace Korelace obecně je míra kvality (vhodnosti, těsnosti) nalezeného regresního modelu pro daná data; vychází z hodnot reziduí V každém typu regresního.
Opakování – přehled metod
Prostorová analýza voleb POL 509
- váhy jednotlivých studií
Regresní analýza výsledkem regresní analýzy je matematický model vztahu mezi dvěma nebo více proměnnými snažíme se z jedné proměnné nebo lineární kombinace.
Hodnocení závislosti STAT metody pro posouzení závislosti – jiné pro:
Parciální korelace Regresní analýza
Korelace a elaborace aneb úvod do vztahů proměnných
Úvod do induktivní statistiky
Metodologie pro ISK 2 Kontrola dat Popis kategorizovaných dat
Plánování přesnosti měření v IG Úvod – základní nástroje TCHAVP
Lineární regrese.
7. Kontingenční tabulky a χ2 test
Třídění 2. a 3. stupně: orientační mapa možností bivariátních analýz
Transkript prezentace:

Korelace a elaborace aneb úvod do vztahů proměnných

Závislost dvou proměnných-přehled Nominální (kontingenční koeficienty, koeficienty asociace) Ordinální (Korelační koeficienty dle Spearmana a Kendalla) Kardinální (Pearsonův párový korelační koeficient, párová regrese)

Začněme opakováním aneb 4 typy závislosti 2 kardinálních proměnných Silná pozitivní závislost Slabá pozitivní závislost Silná negativní závislost Nulová závislost Dopad na korelační koeficient a regresní koeficient Upozornění-lineární regrese i korelace měří jen lineární vztahy

4 typy lineární závislosti 2 kardinálních proměnných Silná pozitivní závislost r = 0,97

4 typy lineární závislosti 2 kardinálních proměnných Silná negativní závislost r = - 0,97

4 typy lineární závislosti 2 kardinálních proměnných Slabá pozitivní závislost r = 0,35

4 typy lineární závislosti 2 kardinálních proměnných Nulová závislost r = 0

!!!Korelace předpoklady!!! Předpoklad pro Pearsonův koeficient normalita proměnných viz např procedura Explore v Analyze-Descriptives (tedy pro korelace chceme náhodný výběr z normálního rozdělení/regrese naopak předpokládá volbu kombinace vysvětlujících proměnných) Předpoklad pro Spearmanův/Kendallův koeficient ordinalita proměnných

Poučky o velikosti koeficientů Hodnota korelace v abs. hodnotě interpretace souvislosti 0,01 – 0,09 triviální, žádná 0,10 – 0,29 nízká až střední 0,30 – 0,49 střední až podstatná 0,50 0,69 podstatná až velmi silná 0,70 0,89 velmi silná 0,90 – 0,99 téměř perfektní De Vaus: 2002

Jak odhalit vliv třetí proměnné (Elaborace a dílčí korelace)

Otázky, které je třeba si položit při odhalení párového vztahu (de Vaus 2002): Jaká je povaha tohoto vztahu, je kauzální nebo ne? Pokud je tento vztah kauzální, je přímý, nebo nepřímý (to je když X ovlivňuje Y prostřednictvím třetí proměnné)? Pokud je tento vztah nepřímý, jakým mechanismem proměnná X ovlivňuje proměnnou Y? Pokud je vztah mezi X a Y nekauzální povahy, jakou funkcí se dá modelovat?

Elaborace Způsob jak odhalit vliv třetí proměnné rozpracovali už v roce 1950 Patricia Kendall s Paulem Lazarsfeldem. Technika byla nazvána elaboration, což lze překládat jak rozpracování, precizace nebo elaborace. Definice tohoto způsobu analýzy by mohla znít: Elaborační analýza obsahuje zavedení třetí proměnné do vztahu mezi dvěma proměnnými a zhodnocení jejího působení. Tím umožňuje hlubší porozumění původnímu párovému vztahu.

Elaborace se obvykle provádí prostřednictvím dvou postupů: Zavedením třetí, testové proměnné do třídění druhého stupně – jinými slovy vytvořením podmíněných tabulek a výpočtem podmíněných korelací. Výpočtem parciálních tabulek a parciálních korelací.

Modely vztahů mezi třemi proměnnými Mezi X a Y je zdánlivý (nepravý) vztah (spurious) X Y Z Příklad: Nepravý vztah je takový, kdy nalezený domněle kauzální vztah, takovýmto vztahem vůbec není. Vztah mezi X a Y se jeví jako existující, avšak je nalezen pouze proto, že jak X, tak Y jsou ovlivňovány existencí a působením proměnné Z. Např. Byl nalezen vztah mezi počtem dětí a výskytem čápů. Tento vztah je způsoben tím, že čápi se nalézají na venkově a na venkově (proměnná Z) se rodí více dětí.

Poučky o dílčích korelacích a) Nastane situace, že vypočtený parciální koeficient má přibližně stejnou hodnotu, jako původní korelace. Co to znamená? Testová proměnná nemá na původní vztah vliv a my si můžeme být jisti, že původní korelace není zdánlivá. b) Parciální koeficient je výrazně nižší než původní korelace a je blízký nule. V takovém případě to znamená, že testová proměnná plně vysvětluje původní vztah, který byl zdánlivý. (resp. zdánlivá korelace či intervenující proměnná ) c) Parciální koeficient se změní jenom částečně. Pak je testová proměnná jen částečně vhodná k vysvětlení původní korelace.

Poznámka závěrem k dílčí korelaci Jak se snažila ukázat tato lekce, při hledání statistických vztahů bychom se neměli spokojit pouze s párovám (bivariate) výsledkem. Vždy, když to má smysl, se pokoušejte zavádět třetí proměnné a zjišťujte, zdali původní vztah „vydržel“, nebo byl modifikován. Prohloubíte tím své poznání a přinesete výsledky, které budou postaveny na solidním základě.