Termodynamika – principy, které vládnou přírodě JAMES WATT 19.1.1736 - 19.8.1819 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy.

Slides:



Advertisements
Podobné prezentace
15. Stavová rovnice ideálního plynu
Advertisements

STRUKTURA A VLASTNOSTI plynného skupenství látek
16. Kruhový děj s ideálním plynem, 2. termodynamický zákon
Molekulová fyzika a termodynamika
Chemická termodynamika I
Elektrostatika.
II. Věta termodynamická
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
Vnitřní energie, práce, teplo
IDEÁLNÍ PLYN Stavová rovnice.
Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: III/2 – Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN prostřednictvím.
Hodnocení elektráren - úkolem je porovnat jednotlivé elektrárny mezi sebou E1 P pE1 P E1 vliv na ŽP E2 P pE2 P E2 vliv na ŽP.
Entropie v nerovnovážných soustavách
Entropie v rovnovážné termodynamice
Julius Robert von Mayer
II. Zákon termodynamiky
Struktura a vlastnosti plynu
Základy rovnovážné termodynamiky
Přednášky z lékařské biofyziky Bioenergetika pro obor: Nutriční terapeut 2011/2012 JAMES WATT Termodynamika I.
Základní poznatky molekulové fyziky a termodynamiky
Základy termodynamiky
Chemická termodynamika II
Entropie David Sommer 3.IT. Historie Rudolf Clausius 0 "Die Energie der Welt ist konstant, die Entropie strebt einem Maximum zu“ 0 Entropie může.
Statistická mechanika - Boltzmannův distribuční zákon
ROVNOVÁŽNÝ STAV, VRATNÝ DĚJ, TEPELNÁ ROVNOVÁHA, TEPLOTA A JEJÍ MĚŘENÍ
Termodynamika Termodynamická soustava – druhy, složky, fáze, fázové pravidlo Termodynamický stav – rovnovážný, nerovnovážný; stabilní, metastabilní, nestabilní.
Plyny.
Molekulová fyzika a termika
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
 Cesta přechodu systému z jednoho stavu do druhého 1) Chemická termodynamika - studuje energetickou stránku chemického děje, podmínky k ustanovení.
Fyzikální a analytická chemie
VNITŘNÍ ENERGIE TĚLESA
Oxidačně-redukční reakce
Termodynamika a chemická kinetika
24. ZÁKONY ZACHOVÁNÍ.
Fyzikálně-chemické aspekty procesů v prostředí
I. Věta termodynamická ΔU = U2 – U1 = W + Q dU = dQ + dW
Termodynamika Termodynamika studuje fyzikální a chemické děje v systémech (soustavách) z hlediska energie Proč některé reakce produkují teplo (NaOH + H2O)
-14- Vnitřní energie, práce a teplo, 1. td. Zákon Jan Klíma
Fyzikální systémy hamiltonovské Celková energie systému je vyjádřená Hamiltonovou funkcí H – hamiltoniánem Energie hamiltonovského systému je funkcí zobecněné.
Chemie anorganických materiálů I.
NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: NÁZEV: VY_32_INOVACE_184_Energie AUTOR: Ing. Gavlas Miroslav ROČNÍK, DATUM: 8.,
FI-15 Termika a termodynamika III
Gymnázium a obchodní akademie Chodov Smetanova 738, Chodov Číslo projektu: CZ.1.07/1.5.00/ Šablona: Inovace a zkvalitnění výuky prostřednictvím.
Struktura a vlastnosti plynů
Název školyStřední odborná škola a Gymnázium Staré Město Číslo projektuCZ.1.07/1.5.00/ AutorMgr. Radomír Tomášů Název šablonyIII/2.
Termodynamika (kapitola 6.1.) Rozhoduje pouze počáteční a konečný stav Nezávisí na mechanismu změny Předpověď směru, samovolnosti a rozsahu reakcí Nepočítá.
Přednášky z lékařské biofyziky Masarykova univerzita v Brně – Biofyzikální centrum JAMES WATT Termodynamika I.
Termodynamika Základní pojmy: TeploQ (J) - forma energie Termodynamická teplotaT (K) 0K= -273,16°C - nejnižší možná teplota (ustane tepelný pohyb) EntropieS.
Vnitřní energie, teplo, teplota. Celková energie soustavy Kinetická energie – makroskopický pohyb Potenciální energie – vzájemné působení těles (makroskopicky)
Fyzika pro lékařské a přírodovědné obory Ing. Petr Vácha ZS – Termika, molekulová fyzika.
Radovan Plocek 8.A. Stavové veličiny Izolovaná soustava Rovnovážný stav Termodynamická teplota Teplota plynu z hlediska mol. fyziky Teplotní stupnice.
Molekulová fyzika 2. Sada pomocných snímků „Teplota“
Číslo projektuCZ.1.07/1.5.00/ Číslo materiáluVY_32_INOVACE_453_Vlastnosti plynů Název školy Masarykova střední škola zemědělská a Vyšší odborná.
16. Kruhový děj s ideálním plynem, 2. termodynamický zákon
-14- Vnitřní energie, práce a teplo, 1. td. Zákon Jan Klíma
Elektrárny 1 Přednáška č.2 Výpočet účinnosti TE
Přípravný kurz Jan Zeman
Statistická termodynamika Chemická rovnováha Reakční kinetika
ESZS Přednáška č.3 Stanovení účinnosti TE (TO) a maximální účinosti
5. Děje v plynech a jejich využití v praxi
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
Struktura a vlastnosti plynu
Vnitřní energie plynu, ekvipartiční teorém
ADIABATICKÝ DĚJ S IDEÁLNÍM PLYNEM.
Elektrárny 1 Přednáška č.3 Pracovní látka TE (TO)
ELEKTRICKÝ POTENCIÁL ELEKTRICKÉ NAPĚTÍ.
STAVOVÉ ZMĚNY IDEÁLNÍHO PLYNU.
Elektrárny 1 Přednáška č.3
Chemická termodynamika
Transkript prezentace:

Termodynamika – principy, které vládnou přírodě JAMES WATT Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Obsah přednášky Vysvětlení základních pojmů termodynamiky, práce a teplo 1. a 2. termodynamický zákon Vysvětlení vztahu mezi entropií a neuspořádaností termodynamického systému, Boltzmannův princip

Termodynamika - fyzikální obor, zabývající se přeměnami energie v makroskopických systémech. Rozvoj: 19. století - parní stroje, výbušné motory, turbíny. Začátkem 20. století - základ fyzikální chemie Klíč k pochopení zvláštností života - nerovnovážná termodynamika

TERMODYNAMICKÝ SYSTÉM - jakékoliv makroskopické těleso (statistický soubor částic, ještě v 19. stol. však spojité prostředí - kontinuum) Izolovaný systém nemůže se svým okolím vyměňovat energii a částice. Uzavřený systém nemůže vyměňovat částice, energii ano. Otevřený systém vyměňuje částice i energii. Izolovaný termodynamický systém musí dospět do rovnovážného stavu, v němž se makroskopicky nemění. Existence živých systémů je neslučitelná se stavem termodynamické rovnováhy. ŽIVÉ SYSTÉMY JSOU SYSTÉMY OTEVŘENÉ

Základní pojmy Veličiny, které popisují termodynamický systém v rovnovážném stavu, se nazývají stavové. K úplnému popisu stavu termodynamického systému je nutný určitý soubor stavových veličin. Tyto veličiny jsou uváděny do vzájemného vztahu ve stavových rovnicích. Nejjednodušší tmd. systém: ideální plyn. Stavová rovnice ideálního plynu: p.V = n.R.T [Pa, m 3, mol, J.K -1.mol -1, K]

Reverzibilní (vratný) děj Prochází-li systém posloupností rovnovážných stavů, které se od sebe liší pouze nekonečně malými rozdíly hodnot stavových veličin, hovoříme o reverzibilním (vratném) ději, protože při “změně znaménka” těchto rozdílů se může posloupnost těchto rovnovážných stavů realizovat v opačném sledu. Ireverzibilní (nevratný) děj Kruhový děj: počáteční a konečný stav systému jsou totožné Znaménková konvence: Teplo i práci přijímanou systémem považujeme za veličiny kladné, teplo systémem odevzdávané a práci systémem konanou považujeme za veličiny záporné.

Práce termodynamického systému Objemová, též mechanická práce tmd. systému (“práce pístu”): W = p.  V Elektrická práce: W = Q.U - Práce nutná pro přenos elektrického náboje Q mezi místy o potenciálovém rozdílu U Chemická práce: W = .  n - Práce potřebná k tomu, aby se zvětšilo nebo zmenšilo množství chemické látky o  n při chemické reakci.  je chemický potenciál.

Další důležité veličiny: Termodynamická (Kelvinova, absolutní) teplota je veličina úměrná střední kinetické energii jedné částice ideálního (jednoatomového) plynu, definovaná vztahem: pak ale platí: Vnitřní energie systému je součet kinetických energií všech částic, které tvoří systém, a potenciálních energií vzájemných interakcí těchto částic. Teplo (tepelná energie) je ta část vnitřní energie systému, kterou si mohou vyměnit tmd. systémy s různými teplotami a která se přitom nemění v práci.

1. TERMODYNAMICKÝ ZÁKON (formulace zákona zachování energie užívaná v termodynamice):  U = W + Q dU = dW + dQ Čteme např.: Vnitřní energie systému se zvýší o práci, kterou vykonalo okolí na systému, a o teplo, které systém z okolí přijal. Vnitřní energie je stavovou veličinou, teplo a práce nejsou

2. TERMODYNAMICKÝ ZÁKON 2. Termodynamický zákon (definice entropie S): Lze ukázat, že pro systémy, které mohou vyměňovat teplo se svým okolím, platí: dS ≥ dQ/T (T je teplota) Celková entropie jakéhokoliv izolovaného termodynamického systému (dQ = 0) má tendenci růst v čase, dokud nedosáhne maximální hodnoty, tj. dS ≥ 0. Tento zákon určuje “směr” procesů probíhajících v přírodě a je jedním z nejdůležitějších přírodních zákonů. dS = 0 Platí pouze pro vratné procesy.

Entropie a neuspořádanost Entropie S termodynamického systému závisí na počtu různých možných mikroskopických uspořádání částic (mikrostavů), které vedou k témuž pozorovanému makroskopickému stavu termodynamického systému. Entropie systému je vyšší, je-li mikroskopické uspořádání systému více neuspořádané a nepravidelné. Ludwig Boltzmann odvodil vzorec vyjadřující tuto skutečnost: S = k.ln W Kde W je počet mikrostavů, které mohou vytvořit daný makrostav k je Boltzmannova konstanta (k = R/N A = 1, J.K -1 ) S je stavovou funkcí. Odvození výše uvedeného vzorce je zdlouhavé a relativně obtížné. V další části přednášky bude podáno poněkud zjednodušené kvalitativní vysvětlení. Předpoklad dalších úvah: celková energie částic a jejich počet v systému se nemění.

„Pokus s kuličkami“ Kuličky mohou být rozlišeny pomocí písmen nebo zůstat nerozlišeny. V krabici od bot narýsujeme čáru, rozdělující její dno na dvě stejné poloviny. Krabicí zatřepeme, a pak zaznamenáme rozmístění kuliček. Zjednodušení: zabýváme se pouze polohami kuliček, jejich hybnost nebo energii nebereme v úvahu.

Několik termínů ze statistické fyziky: fázový prostor („dno krabice“ ) buňka fázového prostoru („polovina dna krabice“ ) obsazovací čísla („počty kuliček v jedné nebo druhé polovině“ ) rozdělovací funkce mikrostav a makrostav Věty (axiómy - soudy, jejichž pravdivost je předpokládaná a ověřená praxí): Pravděpodobnost vzniku kteréhokoliv ze všech možných mikrostavů je stejná. V izolovaných systémech se s největší pravděpodobností realizuje makrostav, který je tvořen největším počtem mikrostavů. Počet mikrostavů, které realizují tentýž makrostav, se nazývá statistická pravděpodobnost (P). Makrostavy se od sebe liší svými obsazovacími čísly.

Gay-Lussacův pokus: (průběh nevratného děje v ideálním plynu) A) Nádoba je rozdělena na dvě části. V jedné z nich se nachází stlačený ideální plyn v rovnovážném stavu. B) Do přepážky uděláme otvor, plyn expanduje do druhé části nádoby - probíhá nevratný děj. C) Po uplynutí (relaxačního) času se v obou částech nádoby ustaluje tmd. rovnováha.

Mezi oběma myšlenými pokusy existuje analogie:

Autor: Vojtěch Mornstein Grafika: Poslední revize: srpen 2012