Oxidačně-redukční reakce

Slides:



Advertisements
Podobné prezentace
Výukový materiál zpracovaný v rámci projektu
Advertisements

Tenze páry nad kapalinou a roztokem
PRŮBĚH CHEMICKÉ REAKCE
Chemická termodynamika I
Chemická kinetika Doposud jsme se zabývali pouze polohou rovnováhy a nezabývali jsme se rychlostí chemických dějů – reakční kinetikou. Pojem aktivační.
II. Věta termodynamická
IDEÁLNÍ PLYN Stavová rovnice.
Fázové rovnováhy Fáze je homogenní část soustavy oddělená od ostatních fází rozhraním, v němž se vlastnosti mění nespojitě – skokem. Soustavy s dvěma fázemi:
A B Rychlost chemické reakce time D[A] Dt rychlost = - D[B] Dt
Základy termodynamiky
Chemická termodynamika II
Statistická mechanika - Boltzmannův distribuční zákon
ROVNOVÁŽNÝ STAV, VRATNÝ DĚJ, TEPELNÁ ROVNOVÁHA, TEPLOTA A JEJÍ MĚŘENÍ
Termodynamika Termodynamická soustava – druhy, složky, fáze, fázové pravidlo Termodynamický stav – rovnovážný, nerovnovážný; stabilní, metastabilní, nestabilní.
1 Termodynamika kovů. 2 Základní pojmy – složka, fáze, soustava Základní pojmy – složka, fáze, soustava Složka – chemické individuum Fáze – chemicky i.
 Cesta přechodu systému z jednoho stavu do druhého 1) Chemická termodynamika - studuje energetickou stránku chemického děje, podmínky k ustanovení.
Fázové rovnováhy.
Fyzikální a analytická chemie
FS kombinované Chemické reakce
Komplexotvorné rovnováhy ve vodách
Zkoumá rychlost reakce a faktory, které reakci ovlivňují
Reakční rychlost Rychlost chemické reakce
Chemické reakce Chemická reakce je děj, při kterém se výchozí látky mění na jiné látky zánikem původních a vznikem nových vazeb Každá změna ve vazebných.
Kinetika chemických reakcí (učebnice str. 97 – 109)
Kinetika ∆c ∆t.
KINETIKA CHEMICKÝCH REAKCÍ
Termodynamika a chemická kinetika
Reakční kinetika zabývá se průběhem reakcí, rychlostmi reakcí
CHEMICKÉ REAKCE.
Kinetika chemických reakcí
X. Chemická ROVNOVÁHA Pozor: tato kapitola se velmi plete s chemickou kinetikou (kapitola VIII) !! Pozn.: Jen stručně, podrobnosti jsou v učebnicích.
SKUPENSKÉ STAVY HMOTY Teze přednášky.
Chemické rovnováhy ve vodách
Rovnovážné stavy.
Chemický děj 1. Klasifikace chemických reakcí 2. Chemické rovnice 3
Fyzikálně-chemické aspekty procesů v prostředí
Fázové rovnováhy podmínky rovnováhy v heterogenních soustavách
Chemická termodynamika (učebnice str. 86 – 96)
Termodynamika Termodynamika studuje fyzikální a chemické děje v systémech (soustavách) z hlediska energie Proč některé reakce produkují teplo (NaOH + H2O)
Fázové rovnováhy Fáze je homogenní část soustavy oddělená od ostatních fází rozhraním, v němž se vlastnosti mění nespojitě – skokem. Soustavy s dvěma fázemi:
Chemická rovnováha Pojem chemické rovnováhy jako dynamické rovnováhy.
Simultánní reakce – následné reakce. Použitím substituce c B ≡ u.v dostáváme pro c B = f(t) výslednou funkci:
Chemie anorganických materiálů I.
Potenciometrie, konduktometrie, elektrogravimetrie, coulometrie
OXIDAČNĚ REDUKČNÍ REAKCE
okolí systém izolovaný Podle komunikace s okolím: 1.
Adsorpce plynů a adsorpce z roztoků na pevné materiály
Chemická rovnováha Pojem chemické rovnováhy jako dynamické rovnováhy.
Elektrodový potenciál
Fyzika kondenzovaného stavu
Termodynamika (kapitola 6.1.) Rozhoduje pouze počáteční a konečný stav Nezávisí na mechanismu změny Předpověď směru, samovolnosti a rozsahu reakcí Nepočítá.
Iontová výměna Změna koncentrace kovu v profilovém elementu toku Faktor  modelově zohledňuje relativní úbytek H + v roztoku související s vymýváním dalších.
Oxidačně redukční reakce
Ideální plyn velikost a hmota částic je vůči jeho objemu zanedbatelná, mezi částicemi nejsou žádné interakce, žádná atrakce ani repulse. Částice ideálního.
Název vzdělávacího materiálu: Rovnováhy Číslo vzdělávacího materiálu: ICT9/18 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název sady.
R YCHLOST CHEMICKÉ REAKCE RNDr. Marta Najbertová.
Radovan Plocek 8.A. Stavové veličiny Izolovaná soustava Rovnovážný stav Termodynamická teplota Teplota plynu z hlediska mol. fyziky Teplotní stupnice.
EU peníze středním školám
Základní pojmy.
Číslo projektu CZ.1.07/1.5.00/ Číslo materiálu VY_32_INOVACE_04-01
Fyzika kondenzovaného stavu
DIGITÁLNÍ UČEBNÍ MATERIÁL
Anorganická chemie Obecné pojmy a výpočty.
REAKČNÍ KINETIKA X Y xX + yY zZ
DIGITÁLNÍ UČEBNÍ MATERIÁL
Reakční kinetika.
Anorganická chemie Obecné pojmy a výpočty.
Kinetika chemických reakcí (učebnice str. 97 – 109)
6. seminář LC 2. část (06.2) © Biochemický ústav LF MU (V.P.) 2011.
Chemická termodynamika
Transkript prezentace:

Oxidačně-redukční reakce Standardní reakční Gibsova (volná) energie ΔGor je termodynamickým potenciálem průběhu chemických dějů. U oxidačně-redukčních reakcí s výměnou elektronů, se potenciál průběhu děje projevuje ve formě elektrického napětí. Potenciál – napětí redox děje je měřitelné při specifickém uspořádání jako elektrochemický článek. Dílčí oxidačně-redukční děje jsou odděleny polopropustnou přepážkou - reakce může probíhat pouze prostřednictvím elektronů přenášených vnějším vodičem s voltmetrem. Danielův článek

Vztah redox potenciálu a Gibbsovy energie Elektrické napětí má rozměr energie – pro vztah mezi oxidačně-redukčním potenciálem a Gibbsovou energií jako obecným termodynamickým potenciálem platí: n je počet vyměňovaných elektronů, f je Faradayova konstanta Pro elektrické napětí, jež můžeme popsaným způsobem pro oxidačně-redukční reakci naměřit, tj. okamžitý redox potenciál této reakce platí stejné principy jako pro reakční Gibbsovu energii V počátečním stavu, kterému odpovídá jedničková aktivita reakčních složek, je Eo = -ΔGor /nf a v rovnováze (konečný stav, který se ustálí, jsou-li elektrody propojeny vodičem) je redox potenciál reakce roven nule - článek je vybit. Tj. platí Nernstova rovnice

Elektrodové reakce Danielův článek – dva dílčí elektrodové děje – elektrodové reakce (vždy ve směru redukce) Hodnoty standardních elektrodových potenciálů Eo jsou zjištěny měřením jednotlivých poločlánků (elektroda z příslušného kovu ponořená do roztoku jeho kationů o jednotkové aktivitě) oproti standardní vodíkové elektrodě, jejíž standardní elektrodový potenciál je vzat za rovný nule. Cu je ušlechtilý kov – ve směru redukce: Zn nikoli

Elektrodové reakce Pro jednotlivé elektrodové reakce (uvažované ve směru redukce) lze obecně psát: Převážná většina elektrodových reakcí (pro kovy všechny) zahrnuje v reakční směsi pouze dvě složky - redukovanou a oxidovanou formu, přičemž stechiometrické koeficienty obou jsou rovny jedné. Pro tento typ dějů lze Nernstovu rovnici psát ve zjednodušené podobě: Resp. tvoří-li redukovanou formu kov (poločlánek s elektrodou z příslušného kovu), jehož aktivita je maximální - rovna jedné, lze psát:

Oxidačně - redukční potenciál prostředí - Eh Oxidačně-redukční procesy v prostředí (přírodní vody) jsou reprezentovány složitým systémem tvořeným větším počtem jednotlivých párových iontů - poločlánků. Pro takovéto prostředí hovoříme o celkovém - sumárním redox potenciálu Eh. Hodnota Eh by byla vyčíslitelná jako sumární ze všech dílčích elektrodových potenciálů vypočtených pro jednotlivé párové ionty při dosazení aktuálně zjištěných koncentrací těchto iontů do uvedené rovnice. Zjišťování Eh libovolného vodného prostředí se prakticky provádí měřením - elektrodou z lesklé Pt propojenou s vhodnou referenční. Zpravidla bývá naměřena nenulová hodnota - Eh > 0 → oxidační vlastnosti a naopak. Přírodní (vodné) prostředí je považováno za ustálené v rovnováze. Pro rovnovážné podmínky je však obecně ΔG = 0, Eh = 0 (systém v rovnováze nemá potenciál – je „vybitý“). Obecný princip pro ΔG v rovnováze = 0 se vztahuje k obecným chemickým dějům, jejichž počáteční rel. množství reakčních složek odpovídají stechiometrii reakce. Pro výchozí stav platí – ΔG = ΔGo, E = Eo, „Eh = Eho“. Ve vodných systémech v prostředí toto obecné východisko samozřejmě dodrženo není. Naměřené Eh > 0 reálného systému zpravidla odpovídá koncentračnímu přebytku rozpuštěného kyslíku. Systém je v energetickém minimu, do obecného rovnovážného stavu ΔG = 0, tj. Eh = 0 však nemůže v souvislosti s koncentračním nepoměrem oxidovatelných složek vůči rozp. O2 dojít.

Kinetika chemických reakcí, reakční rychlost Reakční kinetika studuje průběh chemických reakcí (termodynamicky možných dějů) v čase, tj. jejich rychlost. Obecně může v soustavě probíhat jedna izolovaná reakce nebo více reakcí simultánních (zvratné, boční, následné) Reakce homogenní - všechny složky reakčního systému jsou v jedné fázi Reakce heterogenní – např. řízené difúzí na rozhraní fází Reakční rychlost αA + βB → ηY + ωZ Rozsah reakce: α, β, η, ω – stechiometrické koeficienty, nA, nB, nX, nZ – látková množství reakčních složek

Kinetika chemických reakcí, reakční rychlost Časová změna rozsahu reakce Rychlost reakcí probíhajících v jednotkovém objemu – reakce v roztoku Okamžitá koncentrace

Kinetika chemických reakcí, řád reakce Pro rychlost reakce (probíhající v konst. objemu) pak platí: Rychlost reakcí je závislá na teplotě a koncentraci reagujících látek Za izotermických podmínek platí: Reakční rychlost je úměrná mocninám okamžitých koncentrací reagujících látek Řád reakce – součet exponentů okamžitých koncentrací reagujících látek zjištěný měřením reakční rychlosti Exponenty determinující reakční rychlost jsou v obecnosti nezávislé na stechiometrii

Reakce nultého a prvního řádu Reakce nultého řádu – rychlost je v průběhu reakce konstantní nezávisí na koncentraci reagujících látek Reakce prvního řádu