Allelopathie chemické interakce mezi vyššími rostlinami

Slides:



Advertisements
Podobné prezentace
PLAYBOY Kalendar 2007.
Advertisements

BOTANIKA ORGANELY ROSTLINNÝCH BUNĚK
ORGANICKÉ LÁTKY + KYSLÍK
VLIV VNĚJŠÍCH FAKTORŮ   ÚVOD FYZIKÁLNÍ FAKTORY CHEMICKÉ FAKTORY.
Název materiálu: OPAKOVÁNÍ 2. POLOLETÍ - OTÁZKY
PESTICIDY Vratislav Malý Kristýna Černá Tomáš Jarolín Andrea Mikešová.
Christina Bočáková 3. ročník
Chemie.
Růst a vývoj rostlin Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Růst a vývoj rostlin.
Regulátory rostlinného růstu
Jetel luční Trifolium pratense.
VY_32_INOVACE_G Otázky na bílkoviny

Mikrobiologická nezávadnost naklíčených semen Phaseolus mungo
Vizualizace projektu větrného parku Stříbro porovnání variant 13 VTE a menšího parku.
Dělení se zbytkem 3 MODERNÍ A KONKURENCESCHOPNÁ ŠKOLA
MODERNÍ A KONKURENCESCHOPNÁ ŠKOLA reg. č.: CZ.1.07/1.4.00/ Základní škola, Šlapanice, okres Brno-venkov, příspěvková organizace Masarykovo nám.
Dusíkaté deriváty - obsahují N vázaný na C.
ARITMETICKÁ POSLOUPNOST I
Mechanizační prostředky na ochranu rostlin
Projekt PŘEDPOVĚĎ POČASÍ. projekt PŘEDPOVĚĎ POČASÍ.
Projekt PŘEDPOVĚĎ POČASÍ. projekt PŘEDPOVĚĎ POČASÍ.
Lipidy estery alkoholů a vyšších mastných kyselin.

BRAMBORY (SOLANUM TUBEROSUM)
BOB OBECNÝ (Faba Vulgaris).
Projekt PŘEDPOVĚĎ POČASÍ. projekt PŘEDPOVĚĎ POČASÍ.
Alkeny.
Význam hub a mechů v ekosystému
LIPIDY.
Chemická stavba buněk Září 2009.
Škola: Chomutovské soukromé gymnázium Číslo projektu: CZ.1.07/1.5.00/
Kakao – nápoj pro uvolnění duše
Využití multimediálních nástrojů pro rozvoj klíčových kompetencí žáků ZŠ Brodek u Konice reg. č.: CZ.1.07/1.1.04/ Předmět:Chemie Ročník:9. Téma:Přírodní.
Střední škola zemědělská a přírodovědná Rožnov p. R.
Projekt SIPVZ Multimediální chemie Chemie v praxi
Cytokininy Cytokininy odvozeny od cytokinesis
Rostlinná produkce a prostředí
Jazyk vývojových diagramů
Okolí lidských sídel Sady a ovocné zahrady
Přírodní látky Mgr. Lenka Fasorová.
Interpretace výsledků modelových výpočtů
HOBITI.
Sirné sloučeniny obdoba kyslíkatých derivátů (neb O a S leží
Ovoce a zelenina Svět kolem nás
Ethylén Plynný hormon Objevil D. Neljubov (1901) – inhibice etiolovaných rostlin svítiplynem, identifikoval ethylen-triple response H. Cousins – 1910 –
Látkový a energetický metabolismus rostlin
Střední odborné učiliště Liběchov Boží Voda Liběchov Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona: Fungicidy, obchodní název Předmět:
Jiří Kec,Pavel Matoušek
Genové dělo.
Alelopatie Jiří Čuhel.
Ochrana plodin proti škodlivým činitelům
Vypracoval : Marek Voštinka
Laicky se nazývá :tráva, ganja, hulení, zelí, skaňour
Ochrana rostlin v ekologickém systému hospodaření
Otázky k přednášce 1. 1.Jaké jsou charakteristické vlastnosti rostlin na rozdíl od živočišných organismů na úrovni buňky, pletiva a celého organismu? Jaký.
ABIOTICKÉ PODMÍNKY ŽIVOTA
Pokuste se vlastními slovy definovat karboxylové kyseliny: Karboxylové kyseliny jsou organickými kyselinami (zároveň kyslíkatými deriváty, které ve.
ROSTLINY POLÍ.
Mikroorganismy v životním prostředí
Léčiva Dotkněte se inovací CZ.1.07/1.3.00/
Kvalitní potraviny - kvalitní život CZ.1.07/1.1.00/
Inovace předmětu Gastronomické technologie III (FT6A/2014) Stanovení antioxidační aktivity a celkových polyfenolů v zeleninových salátech Institucionální.
Charakteristika  Alkaloidy dusíkaté látky zásaditého charakteru  Vznikají jako produkty metabolismu aminokyselin v některých rostlinách (čeleď lilkovitých,
CHEMIE - Pesticidy SŠHS Kroměříž Číslo projektu CZ.1.07/1.5.00/
HORMONY Tato práce je šířena pod licencí CC BY-SA 3.0. Odkazy a citace jsou platné k datu vytvoření této práce. VY_32_INOVACE_15_26.
Biopotraviny.
Ochrana rostlin v ekologickém systému hospodaření
Bc. Ivana Francová, SOU Liběchov Chemická ochrana rostlin Chemická ochrana rostlin je dnes nejrozšířenější, využívá velkého množství ochranných látek zvaných.
Transkript prezentace:

Allelopathie chemické interakce mezi vyššími rostlinami chemicky zprostředkovaný souboj rostlin o živiny allelopathické látky - sekundární látky, strukturně jednoduché - terpenické či aromatické povahy allelopathie je častá mezi stromy a keři, ale také mezi pouštními rostlinami, kde je málo vláhy a živin; existuje ve všech klimatických pásech

Allelopathie nejznámější příklad je ořešák černý (Juglans nigra) a ořešák vlašský (Juglans regia) - pozorován úhyn rostlin pod stromem do vzdálenosti délky jeho kořenů juglon

Juglon vodorozpustný hnědý pigment ve stromu vázán ve formě netoxického glykosidu přítomen nejenom v kořenech, ale i listech a slupkách plodů detekovatelný ještě v hloubce 8 m a vzdálenosti až 27 m od kmene toxicita vůči ostatním rostlinám zabraňuje klíčení semen jiných rostlin (100 % inhibice u semen salátu při dávce 0,002 %) některé rostliny jsou schopny allelopathické toxiny tolerovat

Allelopathie Další příklady - pouštní rostliny (keře) kyselina E-skořicová Toxiny jsou produkovány v listech keřů; spadané listy se rozkládají a při tom uvolňují toxiny do půdy, kde se udrží po dlouhou dobu. Zvláštností je keř rodu Parthenium (hvězdnicovité), jehož toxin (kyselina E-skořicová) má allelopathický efekt na vlastní rostlinu.

Allelopathie pásy křovitých porostů jižní Kalifornie dominuje šalvěj (Salvia) a pelyněk (Artemisia) trnité nízké polokeře, kolem nichž jsou holé pruhy půdy bez porostu letniček i přes příznivé klima allelopathické látky - terpeny periodický přírodní cyklus: pravidelně opakované požáry (interval 25 let) po požárech 2 roky dominují jednoleté byliny za 3-4 roky se rozrůstají trnité keře za 5-7 let keře dominují, kontaminují půdu terpeny a zničí okolní porost 1,8-cineol = eukalyptol 1,8-cineol kafr

Další zajímavé látky produkované rostlinami a inhibující klíčení semen či růst jiných rostlin kyselina salicylová dub (Quercus) kofein má autotoxický efekt pravděpodobně autoregulace hustoty porostu přírodní střídání vegetace na jedné lokalitě udržení biodiversity α-terthienyl aksamitník (Tagetes) Allelopathické látky jsou přírodním modelem pro syntetické herbicidy.

Syntetické herbicidy Účinky allelopatických látek jsou prozatím málo podrobně prozkoumány na to, aby mohly být využity ve větším měřítku jako přírodní vzory pro syntetické herbicidy. Spíše se využívá manipulace s fytohormony a příprava jejich syntetických analogů. Rozdělení herbicidů podle účinku: totální selektivní Jiné dělení: kontaktní systémové

Příklady podle typu struktur anorganické - chlorečnan sodný (Travex); totální herbicid organické - hlavní skupiny: chlorované karboxylové kyseliny - na jednoděložné plevele (trávy); př. kyselina trichloroctová (TCA)

Příklady podle typu struktur fenoxyalkankarboxylové kyseliny jde o herbicidy na bázi růstových regulátorů R = CH3, 2-methyl-4-chlorfenoxy-octová kyselina (MCPA) R = Cl, 2,4-dichlorfenoxyoctová kyselina (2,4-D) auxin = kyselina indolyl-3-octová v nízké koncentraci stimulují růst (mimikují auxin), ve vyšší koncentraci působí herbicidně

deriváty močoviny - inhibují fotosyntézu deriváty kyseliny uhličité - karbamáty a thiokarbamáty - na jednoděložné plevele, použití jako preemergentní herbicidy (před vyklíčením obilí) deriváty močoviny - inhibují fotosyntézu Phenmedipham Cycloate Diuron

N-fosfonemethyl-glycin heterocyklické látky - triaziny, triazoly a diaziny; narušují fotosyntézu další typy herbicidních látek - anilidy, nitrily, fosfonáty, fenoly Atrazin Amitrol N-fosfonemethyl-glycin Glyphosate, Roundup

Interakce hostitel-parazit u vyšších rostlin I mezi vyššími rostlinami se vyskytují paraziti - jmelí, kokotice (na větvích), Striga (na kořenech). Semeno parazitické rostliny má 2 základní problémy k řešení - 1) vyklíčit v blízkosti hostitele a 2) napojit se na jeho tkáň. K tomu si dlouhodobým vývojem parazit vytvořil schopnost pozitivně reagovat na kořenové exudáty z hostitelské rostliny.

Striga - parazit na kořenech čiroku (africká obilovina pěstovaná pro sladký sirup) strigol, signál 1) je prokázaným stimulátorem klíčení semen parazitické rostliny dimethoxybenzochinon, signál 2)

Fytoalexiny a fytotoxiny interakce mezi rostlinami a mikroorganismy (dříve mezi vyššími a nižšími rostlinami) divoce rostoucí druhy rostlin jsou obvykle přirozeně rezistentní vůči chorobám způsobeným mikroorganismy

Klasifikace faktorů způsobujících odolnost vůči chorobám: Před napadením mikroorganismem: prohibitiny - brání vývoji mikroorganismu inhibitiny - toxické vůči mikroorganismu Po napadení mikroorganismem: post-inhibitiny - vznikají po napadení z prekursorů, které byly přítomny konstitutivně v rostlině fytoalexiny - syntetizovány de novo genovou expresí nebo aktivací latentního enzymatického systému

katechol, prohibitin z odolných odrůd cibule strukturní základ anthokyanů (barviva), přítomných v různých rostlinách a majících fungicidní účinky isoflavonoidy a flavonoidy jsou účinnými fungicidy; vyskytují se např. v rostlinách rodu Lupinus berberin kořeny mahonie

post-inhibitiny jsou často glykosidy, z nichž se toxin uvolní hydrolýzou, nebo hydrochinony, které se enzymaticky oxidují na toxické chinony sinigrin allylisothiokyanát allylisothiokyanát je vysoce toxický k patogenním plísním; kromě toho je základem aroma bílého zelí

Fáze po napadení mikroorganismem fytoalexiny - nejdůležitější a nejlépe prozkoumaná fáze obrany před mikroorganismy phytos = rostlina, alexos = zahnat nemoc Fytoalexiny jsou látky produkované rostlinou de novo k obraně před chorobami; jsou reakcí rostliny na napadení mikroorganismem. Rozdíl mezi fytoalexiny a rostlinnými toxiny: toxiny jsou konstitutivní (rostlina je produkuje stále) fytoalexiny jsou indukované (reakce na napadení)

V menší míře se fytoalexiny tvoří i při napadení rostliny bakteriemi či viry nebo je-li rostlina vystavena abiotickým stresům (UV záření, teplotní šok, poranění, vysoké koncentrace solí) Fytoalexiny jsou přírodním modelem pro syntetické fungicidy.

Příklady fytoalexinů phaseollin, jeden z prvních identifikovaných fytoalexinů; fazol obecný (Phaseollus vulgaris) ipomeamaron (sladké brambory) rishitin (brambory, Solanum tuberosum)

Příklady fytoalexinů kyselina benzoová, obrana proti hnilobě jablek; konzervační činidlo resveratrol, fytoalexin řady druhů rostlin, je přítomen v červeném víně

Syntetické fungicidy Rozdělení podle účinku:  kontaktní  systémové Rozdělení podle struktury:  anorganické  organické Anorganické fungicidy - sloučeniny síry, mědi, rtuti, zinku, cínu či barya.

Organické fungicidy dithiokarbamáty, chlorované aromáty, deriváty anilinu, aromatické nitrolátky (kontaktní) benzimidazoly, pyrimidiny, piperaziny, morfolinové a triazolové deriváty (systémové) Benomyl Thiabendazol strukturně vycházejí z přírodních benzoxazinonů, které byly isolovány z některých druhů trav

Fytotoxiny / pathotoxiny Po napadení rostliny mikroorganismem začne mikroorganismus produkovat sekundární látky, které jsou toxické pro rostlinu a způsobují symptomy choroby. Pathotoxiny jsou mikrobiální metabolity způsobující chorobné změny (symptomy) v hostitelské rostlině.

Pathotoxiny - typy sloučenin nízkomolekulární (aromáty) - ovlivňují růst rostliny a způsobují její chřadnutí vysokomolekulární (peptidy, proteiny) - způsobují nekrózu rostliny, rozklad tkání toxin z pathogenní houby Ceratocystis, která způsobuje chřadnutí jilmů (přenašečem je kůrovec rodu Scolytus) Některé pathotoxiny působí na hormonální systém rostliny a chřadnutí je způsobeno nesprávnými hladinami rostlinných hormonů (Gibberella).

Nejúčinnější známý pathotoxin - viktorin choroba napadající oves (Cochliobolus victoriae) viktorin je účinný ještě po zředění 1:106 tkáně napadené plísní se rozpadají - buňky přestanou držet pohromadě a tkáň jako celek ztrácí mechanickou odolnost (shnilé ovoce)

Pathotoxiny některých mikroorganismů mají fungicidní účinky na jiné mikroorganismy (např. plíseň Epichloe typhina, rostoucí na travách. Svými pathotoxiny (seskviterpeny) „vytlačí“ jiné druhy plísní, které na trávě parazitují. Některé pathotoxiny jsou přírodním modelem pro syntetické fungicidy či léčiva.