EU-8-51 – DERIVACE FUNKCE VII

Slides:



Advertisements
Podobné prezentace
Lineární rovnice 8.-9.ročník
Advertisements

EU-8-58 – DERIVACE FUNKCE XIV
Výukový materiál vytvořený v rámci projektu „EU peníze školám“ • Škola: Střední škola právní – Právní akademie, s.r.o. • Typ šablony: III/2 Inovace a zkvalitnění.
Název projektu: Učení pro život Reg.číslo projektu: CZ.1.07/1.5.00/ Číslo šablony: III / 2 Název sady B: Paprsková optika II. Autor: Mgr. Dagmar.
Název projektu: Učení pro život Reg.číslo projektu: CZ.1.07/1.5.00/ Číslo šablony: III / 2 Název sady C: Posloupnosti Autor: Mgr. Dagmar Špalová.
Název projektu: Učení pro život Reg.číslo projektu: CZ.1.07/1.5.00/ Číslo šablony: III / 2 Název sady C: Posloupnosti Autor: Mgr. Dagmar Špalová.
Název projektu: Učení pro život Reg.číslo projektu: CZ.1.07/1.5.00/ Číslo šablony: III / 2 Název sady C: NEROVNICE Autor: Mgr. Alena Štědrá Název.
Název projektu: Učení pro život
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
Název školy Střední škola pedagogická, hotelnictví a služeb, Komenského 3, Litoměřice AutorMgr. Milena Procházková Název šablonyIII/2_Inovace a zkvalitnění.
AnotaceMateriál tvoří prezentace. Vyjádření vlastnictví, popsat předmět, určit barvu. AutorMgr. Olga Medunová JazykFrancouzština Očekávaný výstup Naučit.
Výukový materiál vytvořený v rámci projektu „EU peníze školám“ Škola: Střední škola právní – Právní akademie, s.r.o. Typ šablony: III/2 Inovace a zkvalitnění.
EU-8-59 – DERIVACE FUNKCE XV
Škola:Gymnázium Václava Hlavatého, Louny, Poděbradova 661, příspěvková organizace Číslo projektu:CZ.1.07/1.5.00/ Název projektu:Inovace výuky Číslo.
Fakulta životního prostředí Katedra informatiky a geoinformatiky
Škola:Gymnázium Václava Hlavatého, Louny, Poděbradova 661, příspěvková organizace Číslo projektu:CZ.1.07/1.5.00/ Název projektu:Inovace výuky Číslo.
EU-8-46 – DERIVACE FUNKCE II
DERIVACE - SOUČINU a PODÍLU FUNKCÍ - SLOŽENÉ FUNKCE
Výukový materiál vytvořený v rámci projektu „EU peníze školám“
Výukový materiál vytvořený v rámci projektu „EU peníze školám“ Škola: Střední škola právní – Právní akademie, s.r.o. Typ šablony: III/2 Inovace a zkvalitnění.
EU-8-52 – DERIVACE FUNKCE VIII
Výukový materiál vytvořený v rámci projektu „EU peníze školám“
CZECH SALES ACADEMY Trutnov – střední odborná škola s.r.o.
Škola: Střední škola právní – Právní akademie, s.r.o. Typ šablony: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt: CZ.1.07/1.5.00/
Výukový materiál vytvořený v rámci projektu „EU peníze školám“ Škola: Střední škola právní – Právní akademie, s.r.o. Typ šablony: III/2 Inovace a zkvalitnění.
EU-8-64 – DIFERENCIÁLNÍ POČET
Škola:Gymnázium Václava Hlavatého, Louny, Poděbradova 661, příspěvková organizace Číslo projektu:CZ.1.07/1.5.00/ Název projektu:Inovace výuky Číslo.
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Škola: Střední škola právní – Právní akademie, s.r.o. Typ šablony: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt: CZ.1.07/1.5.00/
Škola:Gymnázium Václava Hlavatého, Louny, Poděbradova 661, příspěvková organizace Číslo projektu:CZ.1.07/1.5.00/ Název projektu:Inovace výuky Číslo.
VYHLEDÁVÁNÍ GEOMETRICKÝCH TVARŮ V OBRÁZCÍCH
Lomený výraz – definice, vlastnosti
Exponenciální funkce. y = f ( x ) = e x D ( f ) = R R ( f ) = (0, +∞)
Škola:Gymnázium Václava Hlavatého, Louny, Poděbradova 661, příspěvková organizace Číslo projektu:CZ.1.07/1.5.00/ Název projektu:Inovace výuky Číslo.
Název školyIntegrovaná střední škola technická, Vysoké Mýto, Mládežnická 380 Číslo a název projektuCZ.1.07/1.5.00/ Inovace vzdělávacích metod EU.
EU-8-53 – DERIVACE FUNKCE IX
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona:III/2č. materiálu:VY_32_INOVACE_95.
Výukový materiál zpracovaný v rámci projektu Označení:Sada: Ověření ve výuce:Třída: Datum: Registrační číslo projektu:CZ.1.07/1.5.00/ VY_32_INOVACE_MAT_SU_3_12.
Šablona:III/2č. materiálu:VY_32_INOVACE_149 Jméno autora: Mgr. Tomáš FULÍN Třída/ročník: PS2 / 2.ročník Datum vytvoření: Vzdělávací oblast:Matematika.
Obchodní akademie, Ostrava-Poruba, příspěvková organizace Vzdělávací materiál/DUMVY_32_INOVACE_08B09 AutorRNDr. Marcela Kepáková Období vytvořeníProsinec.
Škola:Gymnázium Václava Hlavatého, Louny, Poděbradova 661, příspěvková organizace Číslo projektu:CZ.1.07/1.5.00/ Název projektu:Inovace výuky Číslo.
Šablona:III/2č. materiálu:VY_32_INOVACE_147 Jméno autora: Mgr. Tomáš FULÍN Třída/ročník: PS2 / 2.ročník Datum vytvoření: Vzdělávací oblast:Matematika.
Žáci procvičují znalosti o stavbě věty,souhlásek, samohlásek. Autor
Výukový materiál vytvořený v rámci projektu „EU peníze školám“ Škola: Střední škola právní – Právní akademie, s.r.o. Typ šablony: III/2 Inovace a zkvalitnění.
EU-8-60 – DERIVACE FUNKCE XVI
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
Jméno autora Zdeňka Sudová název projektu Modernizace výuky na ZŠ Česká Lípa, Pátova ulice číslo projektu CZ.1.07/1.4.00/ číslo šablony III/2 Inovace.
Škola:Gymnázium Václava Hlavatého, Louny, Poděbradova 661, příspěvková organizace Číslo projektu:CZ.1.07/1.5.00/ Název projektu:Inovace výuky Číslo.
Škola:Gymnázium Václava Hlavatého, Louny, Poděbradova 661, příspěvková organizace Číslo projektu:CZ.1.07/1.5.00/ Název projektu:Inovace výuky Číslo.
Fakulta životního prostředí Katedra informatiky a geoinformatiky
MATEMATICKÉ KŘÍŽOVKY pro 1. ročník
ŠKOLA:Gymnázium, Tanvald, Školní 305, příspěvková organizace ČÍSLO PROJEKTU:CZ.1.07/1.5.00/ NÁZEV PROJEKTU:Šablony – Gymnázium Tanvald ČÍSLO ŠABLONY:III/2.
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
9. Vlastnosti funkcí – rostoucí a klesající funkce - příklady
FUNKCE 19. Logaritmická funkce Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Jitka Kusendová. Dostupné z
DERIVACE - SOUČINU FUNKCÍ - PODÍLU FUNKCÍ - SLOŽENÉ FUNKCE
Zkvalitnění výuky na GSOŠ prostřednictvím inovace CZ.1.07/1.5.00/ Gymnázium a Střední odborná škola, Klášterec nad Ohří, Chomutovská 459, příspěvková.
Zkvalitnění výuky na GSOŠ prostřednictvím inovace CZ.1.07/1.5.00/ Gymnázium a Střední odborná škola, Klášterec nad Ohří, Chomutovská 459, příspěvková.
Zkvalitnění výuky na GSOŠ prostřednictvím inovace CZ.1.07/1.5.00/ Gymnázium a Střední odborná škola, Klášterec nad Ohří, Chomutovská 459, příspěvková.
Zkvalitnění výuky na GSOŠ prostřednictvím inovace CZ.1.07/1.5.00/ Gymnázium a Střední odborná škola, Klášterec nad Ohří, Chomutovská 459, příspěvková.
Zkvalitnění výuky na GSOŠ prostřednictvím inovace CZ.1.07/1.5.00/ Gymnázium a Střední odborná škola, Klášterec nad Ohří, Chomutovská 459, příspěvková.
Zkvalitnění výuky na GSOŠ prostřednictvím inovace CZ.1.07/1.5.00/ Gymnázium a Střední odborná škola, Klášterec nad Ohří, Chomutovská 459, příspěvková.
FUNKCE 18. Exponenciální funkce Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Jitka Kusendová. Dostupné z
Zkvalitnění výuky na GSOŠ prostřednictvím inovace CZ.1.07/1.5.00/ Gymnázium a Střední odborná škola, Klášterec nad Ohří, Chomutovská 459, příspěvková.
Inverzní funkce k funkcím goniometrickým (2)
ŠKOLA: Gymnázium, Tanvald, Školní 305, příspěvková organizace
Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Jihlava Šablona 32 VY_32_INOVACE_120.MAT.02 Logaritmická funkce.
Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Jihlava Šablona 32 VY_32_INOVACE_117.MAT.02 Inverzní funkce.
Vyvození a procvičení učiva
8. Vlastnosti funkcí – monotónnost funkce
Transkript prezentace:

EU-8-51 – DERIVACE FUNKCE VII Škola: Gymnázium Václava Hlavatého, Louny, Poděbradova 661, příspěvková organizace Číslo projektu: CZ.1.07/1.5.00/34.0616 Název projektu: Inovace výuky Číslo a název šablony klíčové aktivity: EU-8 - Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Tematická oblast: Volitelný předmět matematika (matematický seminář) EU-8-51 – DERIVACE FUNKCE VII (derivace inverzní funkce, derivace cyklometrických funkcí) Anotace Zopakování pojmu inverzní funkce k elementárním funkcím, odvození vztahu mezi derivací funkce f v bodě x0 a derivací k ní inverzní funkce f-1 v bodě y0 = f(x0). Použití vztahu k odvození derivací cyklometrických funkcí. Autor PaedDr. Milan Rieger Jazyk Čeština Očekávaný výstup Žák chápe pojem inverzní funkce a myšlenku obecného odvození derivace inverzní funkce pomocí znalosti derivace dané funkce. Žák chápe odvození derivace cyklometrických funkcí, odvozené vzorce dovede používat při řešení úloh. Intuitivně chápe pojem nevlastní derivace na základě animací. Klíčová slova Inverzní funkce a její derivace, derivace cyklometrických funkcí. Druh učebního materiálu Pracovní list / Animace / Obrázky / Testy Druh interaktivity Aktivita / Výklad / Test / Kombinace Cílová skupina Žák Stupeň a typ vzdělávání Střední vzdělávání Typická věková skupina 17 – 19 let Datum vytvoření 3. 1. 2013

PŘIPOMENUTÍ POJMU INVERZNÍ FUNKCE Osová souměrnost podle osy prvního a třetího kvadrantu (y = x) nabízí rozšíření elementárních funkcí o funkce tzv. inverzní. Pokud je funkce f prostá (rostoucí, klesající) v D(f), existuje k ní inverzní funkce f -1. Platí: D(f -1) = H(f), H(f -1) = D(f); [x; y]  f  [y; x]  f -1; y = f(x)  x = f -1(y). PŘÍKLAD 1: Napište rovnici inverzní funkce k funkci f: y = 2 x + 1.

PŘÍKLAD 2: Inverzní funkce k lineární lomené funkci.

PŘÍKLAD 3: Funkce y = arcsin x je inverzní funkce k funkci y = sin x.

PŘÍKLAD 4: Funkce y = arccos x je inverzní funkce k funkci y = cos x.

PŘÍKLAD 5: Funkce y = arctg x je inverzní funkce k funkci y = tg x.

PŘÍKLAD 6: Funkce y = arccotg x je inverzní funkce k funkci y = cotg x.

PŘÍKLAD 7: Derivace inverzní funkce. Derivace elementárních funkcí rozšíříme o derivace cyklometrických funkcí (y = arcsin x, y = arccos x, y = arctg x, y = arccotg x), exponenciálních a logaritmických funkcí. Pro usnadnění odvození derivací těchto funkcí se pokusíme „objevit“ vztah mezi derivací funkce y = f(x) a funkce k ní inverzní. Podívejte se na následující obrázek. Víme, že f ' (x0) = tg a, (f -1) ' (y0) = tg (90°- a). Jaký je vztah mezi těmito derivacemi?

PŘÍKLAD 8: Derivace funkce y = arcsin x. OTÁZKY: 1. Podívejte se na uvedenou animaci. Umíte určit derivaci funkce y = arcsin x v bodě 1 zleva? 2. Podívejte se na uvedenou animaci. Umíte určit derivaci funkce y = arcsin x v bodě - 1 zprava?

PŘÍKLAD 9: Derivace funkce y = arccos x. OTÁZKY: 1. Podívejte se na uvedenou animaci. Umíte určit derivaci funkce y = arccos x v bodě 1 zleva? 2. Podívejte se na uvedenou animaci. Umíte určit derivaci funkce y = arccos x v bodě - 1 zprava?

PŘÍKLAD 10: Derivace funkce y = arctg x.

PŘÍKLAD 11: Derivace funkce y = arccotg x.

SHRNUTÍ

SHRNUTÍ

PŘÍKLAD 12 Napište rovnici tečny a normály k funkci f: y = arcsin x v bodě T [ 0,5; ? ].

AUTOTEST 1. Napište rovnici tečny a normály k funkci f: y = arccos x v bodě T [ – 0,5; ? ]. 2. Napište rovnici tečny a normály k funkci f: y = arctg x v bodě T [ 1 ; ? ]. 3. Napište rovnici tečny a normály k funkci f: y = arccotg x v bodě T [ – 1 ; ? ]. 4. Derivujte funkce: f: y = arcsin x + arccos x f: y = arctg x + arccotg x Řešení úlohy 1:

Řešení úlohy 2:

Řešení úlohy 3:

Řešení úlohy 4a: Řešení úlohy 4b: Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Milan Rieger.