Transkripce (první krok genové exprese)

Slides:



Advertisements
Podobné prezentace
6. Nukleové kyseliny Nukleové kyseliny jsou spolu s proteiny základní a nezbytnou složkou živé hmoty. Hlavní jejich funkce je uchování genetické informace.
Advertisements

Molekulární základy dědičnosti
Transkripce, translace, exony, introny
Transkripce (první krok genové exprese: Od DNA k RNA)
BIOLOGIE 1 Rostliny Biologické vědy Metody práce v biologii
Registrační číslo projektu: CZ.1.07/1.5.00/ Číslo DUM:
GENETIKA NUKLEOVÉ KYSELINY DNA, RNA
Milada Teplá, Helena Klímová
Translace (druhý krok genové exprese: Od RNA k proteinu)
NUKLEOVÉ KYSELINY BIOCHEMIE.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je RNDr. Pavlína Koch ová CZ.1.07/1.5.00/ Autor materiálu:RNDr. Pavlína Kochová Datum.
1 Chromosom Milada Roštejnská Helena Klímová. Obsah Chromosom Stav chromosomů se během buněčného cyklu mění Eukaryotní DNA je sbalena do chromosomu Interfázový.
Nově syntetizovaný řetězec DNA
Transkripce (první krok genové exprese)
Replikace DNA Milada Roštejnská Helena Klímová
Replikace DNA Tato prezentace se zabývá procesem Replikace DNA.
Transkripce a translace
REGULACE GENOVÉ EXPRESE
Translace (druhý krok genové exprese)
Proteosyntéza RNDr. Naďa Kosová.
Struktura a funkce buněčného jádra
Registrační číslo projektu: CZ.1.07/1.5.00/ Číslo DUM:
Nukleové kyseliny Struktura DNA a RNA Milada Roštejnská Helena Klímová
METABOLISMUS BÍLKOVIN II Anabolismus
Genetický kód Jakmile vznikne funkční mRNA, informace v ní obsažená může být ihned použita pro syntézu proteinu. Pravidla, kterými se řídí prostřednictvím.
Translace (druhý krok genové exprese)
NUKLEOVÉ KYSELINY A JEJICH METABOLISMUS
Molekulární základy dědičnosti
Pro charakteristiku plazmidu platí: je kruhová DNA
Molekulární genetika.
Nukleové kyseliny RNDr. Naďa Kosová.
Didaktické testy z biochemie 6
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í
Od DNA k proteinu.
Didaktické testy z biochemie 4 Replikace Milada Roštejnská Helena Klímová.
GENETICKÁ INFORMACE je informace, která je primárně obsažena v nukleotidové sekvenci v nukleotidových sekvencích jsou obsaženy následující informace: o.
Milada Teplá, Helena Klímová
EXPRESE GENETICKÉ INFORMACE Transkripce
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í
Nukleové kyseliny Opakování
Didaktické testy z biochemie 5 Transkripce Milada Roštejnská Helena Klímová.
Transkripce a translace
Sacharidová složka nukleotidů
NUKLEOVÉ KYSELINY (NK)
Transkripce a úpravy RNA
2014 Výukový materiál GE Tvůrce: Mgr. Šárka Vopěnková Projekt: S anglickým jazykem do dalších předmětů Registrační číslo: CZ.1.07/1.1.36/
Základy molekulární genetiky. Bílkoviny Makromolekuly složené z aminokyselin jedna molekula bílkoviny tvořena obvykle stovkami aminokyselin v živých organismech.
Autor: Ing. Michal Řehulka  Přírodní makromolekulární látky (Biopolymery)  Vytvářejí dlouhé vláknité molekuly  Nesou a uchovávají genetickou informaci.
EU peníze středním školám Název vzdělávacího materiálu: Nukleové kyseliny II. - RNA, proteosyntéza Číslo vzdělávacího materiálu: ICT10/16 Šablona: III/2.
1. 1.Molekulární podstata dědičnosti. Čtyři hlavní skupiny organických molekul v buňkách.
Didaktické testy z biochemie 5
DIGITÁLNÍ UČEBNÍ MATERIÁL
Název školy: Gymnázium, Chomutov, Mostecká 3000, příspěvková organizace Autor: Datum tvorby: Mgr. Daniela Čapounová Název: VY_32_INOVACE_06C_19_Proteosyntéza.
NÁZEV ŠKOLY: ČÍSLO PROJEKTU: NÁZEV MATERIÁLU: TÉMA SADY: ROČNÍK:
Metabolické děje II. – proteosyntéza
Nukleové kyseliny Charakteristika: biopolymery
Nukleové kyseliny obecný přehled.
Předmět: KBB/BB1P; KBB/BUBIO
Syntéza a postranskripční úpravy RNA
Nukleové kyseliny Struktura DNA a RNA
Od DNA k proteinu - v DNA informace – geny – zápis ve formě 4 písmen = nukleotidů = deoxyribóza, fosfátový zbytek, báze (A, T, C, G) - DNA = dvoušroubovice,
Milada Teplá, Helena Klímová
Molekulární základ dědičnosti
Molekulární základy genetiky
Replikace DNA Milada Roštejnská Helena Klímová
17-Nukleové kyseliny a proteosyntéza
MiRNA
37. Bi-2 Cytologie, molekulární biologie a genetika
37. Bi-2 Cytologie, molekulární biologie a genetika
Transkript prezentace:

Transkripce (první krok genové exprese) Od DNA k RNA Prezentace Transkripce se zabývá přepisem genové informace z DNA do RNA. Milada Roštejnská Helena Klímová

Obsah Transkripce a translace Úsek DNA je přepisován do RNA Transkripcí vzniká RNA komplementární k jednomu řetězci DNA RNA-polymerasa a směr transkripce Kliknutím na zvolený nadpis přejdete na příslušný snímek. Na obsah se vždy vrátíte kliknutím na animační tlačítko „Obsah“. Posttranskripční úpravy RNA u eukaryot Použitá literatura

Transkripce a translace Jestliže buňka potřebuje nějaký konkrétní protein, je nukleotidová sekvence (gen) v patřičné oblasti dlouhé molekuly DNA v chromosomu nejprve zkopírována do mRNA. Tato RNA je přímo využívána jako templát (předloha, matrice) pro tvorbu proteinů. Genetická informace je předávána z DNA do RNA procesem zvaným transkripce a následně z RNA do proteinu procesem zvaným translace. transkripce translace DNA mRNA Protein Obsah Obr. 1. Průběh proteosyntézy

Úsek DNA je přepisován do RNA Ribonukleotidová sekvence RNA je určena komplementárním párováním bází. Obsah Obr. 2. Párování bází

Úsek DNA je přepisován do RNA Jestliže se volný ribonukleotid páruje s deoxyribonukleotidem v templátové DNA, je tento ribonukleotid kovalentně připojen fosfodiesterovou vazbou k rostoucímu řetězci RNA v enzymově katalyzované reakci. Ribonukleosidtrifosfáty Nově syntetizovaná mRNA Na snímku je vytvořená animace znázorňující připojení ribonukleosidtrifosfátu k nově se syntetizující mRNA. Templát pro syntézu RNA Dvoušroubovice DNA Obsah Směr transkripce Obr. 3. Průběh transkripce

Úsek DNA je přepisován do RNA 3' Spustit animaci Nově syntetizovaná mRNA 5' Ribonukleosidtrifosfát 5' 3' Animace se spustí po kliknutí na animační tlačítko „Spustit animaci“. Na snímku je vytvořená animace zobrazující transkripci. Transkripce je katalyzována enzymem nazývaným RNA-polymerasa, který připojuje k templátu správné ribonukleosidtrifosfáty (ATP, CTP, GTP a UTP). Ribonukleosidtrifosfáty jsou znázorněny modře. Templát pro syntézu RNA 3' Obsah Obr. 4. Přepis úseku DNA do RNA 5'

Transkripcí vzniká RNA komplementární k jednomu řetězci DNA Řetězec RNA vznikající transkripcí se nazývá transkript. Transkript je prodlužován a je komplementární k templátovému řetězci DNA. Transkript Vzhledem k tomu, že dochází k přepisu pouze malé části DNA, jsou molekuly RNA mnohem kratší (cca několik 1000 ribonukleotidů). Směr transkripce Obsah Obr. 5. Transkript

RNA-polymerasa a směr transkripce RNA-polymerasa katalyzuje připojování nukleotidů na 3'-konec rostoucího řetězce RNA za vzniku fosfodiesterové vazby mezi 3'-OH skupinou řetězce a 5'-fosfátovou skupinou přidávaného nukleotidu. RNA je syntetizována ve směru 5' → 3'. Pro syntézu RNA je využívána energie vznikající hydrolýzou ribonukleosidtrifosfátu (ATP, UTP, GTP a CTP). RNA-polymerasa se pohybuje krok po kroku po DNA, rozvíjí její dvoušroubovicovou strukturu a uvolňuje tak vlákno pro komplementární párování s volnými ribonukleotidy. Na snímku je vytvořená animace znázorňující připojení ribonukleosidtrifosfátu k nově se syntetizující mRNA a vznik fosfodiesterové vazby. Vznik fosfodiesterové vazby 5' 3' Obsah Obr. 6. Vznik fosfodiesterové vazby

Obr. 7. Vznik fosfodiesterové vazby 3' A G C U T 5' 3' Templátový Řetězec (DNA) Nově syntetizovaný (RNA) 5' Templátový Řetězec (DNA) U A A T Nově syntetizovaný Řetězec (RNA) 3'-konec 5'-konec G C Obsah 5' Fosfodiesterová vazba 3'

RNA-polymerasa Obsah Ribonukleosidtrifosfáty Templát pro syntézu RNA Rozvíjecí místo Obsah Obr. 8. RNA-polymerasa

Celá DNA včetně exonů i intronů je transkribována do mRNA Sestřih Eukaryotní DNA obsahuje kromě kódujících sekvencí (tzv. exony) i nekódující sekvence (tzv. introny). Introny nejsou překládány do proteinů. Celá DNA včetně exonů i intronů je transkribována do mRNA Introny jsou odstraňovány enzymy (tzv. sestřihové enzymy) a exony jsou spojeny dohromady. Tento krok se nazývá sestřih (anglicky RNA splicing). Obr. 10. Exony a introny mRNA Rozdělení DNA na exony a introny je možné z učiva středoškolské biochemie vynechat. Na snímku je vytvořená animace znázorňující odstranění intronů a spojení exonů. Exony Introny Obsah 2. Odštěpení intronů a spojení exonů 1. Přiblížení obou konců intronů

DNA je uzavřena v jádře, upravená mRNA je transportována malými jadernými póry do cytoplasmy a tam překládána na proteiny (translace). DNA (v jádře) Posttranskripční úpravy transkripce Pre-mRNA (v jádře) mRNA (vznik v jádře, transport do cytoplasmy) translace Protein Posttranskripční úpravy RNA je možné z učiva středoškolské biochemie vynechat. Obr. 9. Průběh proteosyntézy Obsah

Použitá literatura Obsah [1] ALBERTS, B. a kol. Základy buněčné biologie. Ústí nad Labem: Espero Publishing, 1997. [2] NEČAS, O. a kol. Obecná biologie pro lékařské fakulty. Jinočany: Nakladateství H&H, 2000. [3] KUBIŠTA, V. Buněčné základy životních dějů. Praha: Scientia, 1998. Obsah