Dýchací systém a zátěž.

Slides:



Advertisements
Podobné prezentace
Fyziologie- dýchací systém v zátěži
Advertisements

KARDIORESPIRAČNÍ ADAPTACE NA TRÉNINK
Reakce a adaptace oběhového systému na zatížení
Otázky z fyziologie – přednášky
Fyziologické aspekty PA dětí
Žena a sport Mgr. Lukáš Cipryan.
Elektronický materiál byl vytvořen v rámci projektu OP VK CZ.1.07/1.1.24/ Zvyšování kvality vzdělávání v Moravskoslezském kraji Střední průmyslová.
Látková výměna (metabolismus)
ZÁTĚŽOVÉ VYŠETŘENÍ Robergs a Roberts – EXERCISE PHYSIOLOGY.
METABOLICKÁ ADAPTACE NA TRÉNINK
Fyziologie tělesné zátěže-oběhový systém
Reakce a adaptace dýchacího systému na fyzickou práci
C licence FAČR Biomedicínské aspekty pohybových aktivit.
Pohybové schopnosti Vytrvalostní schopnosti Obratnostní schopnosti
Fyziologie zátěže úvodní hodina
RESPIRAČNÍ REGULACE BĚHEM ZÁTĚŽE
Zásady výživy sportovce
Fyziologie dýchání I. Vlastnosti plynů II. Mechanika dýchání III
Bránice. Mechanismus nádechu a výdechu. Vitální kapacita plic
VYTRVALOSTNÍ SCHOPNOSTI. VYTRVALOST SCHOPNOST PROVÁDĚT POHYBOVOU ČINNOST PO DLOUHOU DOBU SCHOPNOST ODOLÁVAT ÚNAVĚ PŘEKONÁVAT VZDÁLENOST URČITOU INTENZITOU.
Žena a sport.
Dýchací soustava II.
PORUCHY A VYŠETŘENÍ PLICNÍ VENTILACE
Fyziologie dýchání - úvod
Výživa a potraviny Metabolismus člověka Obrázek:
Dýchací soustava. dýchací soustava plíceplíce (pulmo) –pravá - 3 laloky, levá - 2 laloky –plicní váčky složeny z plicních sklípků (alveol) opletené kapilárami,
Fyziologie zátěže úvodní hodina
Fyziologické Aspekty Sportovních Her PhDr. Michal Botek, Ph.D.
Anaerobní testy ? (pouze ilustrace pro přednášky) Jan Novotný, Martina Novotná FSpS MU, Brno.
Norský model Rozvoj aerobních schopností. Organizace - principy.
Trénink běžeckých disciplín
Spirometrie v ambulanci praktického lékaře
Reakce a adaptace oběhového systému na zátěž
Aerobní zdatnost Školení trenérů licence A
Biofyzika dýchání. Spirometrie
ZÁKLADY PRESKRIPCE PROGRAMU POHYBOVÉ AKTIVITY
Vytrvalostní disciplíny MUDr.Kateřina Kapounková
Fyziologie dýchacího systému
© Tom Vespa. Měkota Je to soubor předpokladů provádět aktivitu: a) určitou nižší intenzitou co nejdéle b) stanovenou dobu (vzdálenost) co nejvyšší intenzitou.
Motorické schopnosti (Physical Abilities, Motorische Eigenschaften)
ROZVOJ VYTRVALOSTI David Zahradník, PhD.
Dýchací systém.
Spirometrie Spirometry.
Fyziologie dýchacího systému
Výpočet denního energetického výdeje
METABOLISMUS.
METABOLICKÁ CHARAKTERISTIKA VÝKONU METABOLICKÉ KRYTÍ PODÍL AEROBNÍHO a ANAEROBNÍHO KRYTÍ.
Dýchací systém Školení trenérů licence A Fakulta tělesné kultury UP Olomouc Biomedicínské předměty Doc. MUDr. Pavel Stejskal, CSc.
Fyziologie sportovních disciplín
Metodická komise OSÚ-ZL Cvičitel lyžování © 2010.
Transportní systém PhDr. Michal Botek, Ph.D. Fakulta Tělesné kultury, Univerzity Palackého.
Příjem a výdej energie. V čem měříme množství energie? Množství energie (ať již obsažené v potravinách či potřebné pro správnou funkci našeho těla) měříme.
Zvýšená hodnota metabolismu v zátěži vyžaduje zvýšený přísun kyslíku do tkání pro zajištění oxidativní glykolýzy (štěpení cukrů za přístupu kyslíku- od.
TRANSPORTNÍ SYSTÉM. FUNKCE TRANSPORTNÍHO SYSTÉMU.
Vytrvalostní schopnosti (endurance abilities, Ausdauerfähigkeit)
Fyziologie dětí Mgr. Lukáš Cipryan.
Fyziologické aspekty PA dětí
Fyziologie dýchacího systému
Josef Srnec Marek Lipenský 6. skupina, 2007/2008
Fyziologie zátěže úvodní hodina
Zátěžové testy aerobních schopností Stanovení ANP W170 VO2max
Fyziologie ASEBS Martina Bernaciková.
Spirometrie Spirometry.
Metabolismus a energetické krytí při sportu
Bazální metabolismus Výpočet denního energetického výdeje
Bazální metabolismus Výpočet denního energetického výdeje
Anaerobní práh.
Spirometrie.
Dýchání při tělesné zátěži
Plíce obr. 8 Dvě plíce houbovité struktury a narůžovělé barvy vyplňují většinu dutiny hrudní a jsou chráněny pružným hrudním košem. Pravá plíce Levá.
Transkript prezentace:

Dýchací systém a zátěž

Základní pojmy Dechová frekvence (DF) Dechový objem (DO) Minutová ventilace (MV) Maximální minutová ventilace (MMV) Vitální kapacita (VC) IRV, ERV, DO, RV

VC IN VC DO VC EX

Mechanika dýchání při práci: plicní ventilace v klidu: brániční dýchání u netrénovaného 30-40%, u trénovaného 50-60% při práci se podíl bráničního dýchání ↑, postupně přechod dýchání do inspirační polohy (do IRV), do DF 40 se nepoužívá výdechové svalstvo, při ↑DF se zapojují výdechové svaly → ↑spotřeba energie; →lepší je ↑DO a ↓DF

Dechová frekvence (DF) zvyšování v průběhu práce je individuální, u žen bývá vyšší lehká práce 20-30/min, těžká 30-40/min, velmi těžká 40-60/min u zátěže cyklického charakteru může být vázána na pohyb ↑DF může vést ke ↓DO a tím i minutové ventilace

Dechový objem (DO) v klidu asi 0.5 l, střední výkon asi 1-2 l (30%VC), těžká práce asi 2-3 l (50%VC, u trénovaných až 60-70%VC)

Vitální kapacita (VC) je statický parametr, ovlivnitelný předchozí zátěží: při mírné (rozdýchání) se může ↑, při střední se nemění, při vysoké pro únavu dýchacích svalů může i klesnout na 60% výchozí hodnoty závisí na pohlaví, věku, tělesném povrchu a trénovanosti

Minutová ventilace (MV) závisí na obsahu O2 a CO2 minutová ventilace po skončení práce klesá nejdříve rychle, pak pozvolněji

Ventilace a spotřeba kyslíku

Maximální minutová ventilace (MMV) volní: měřena v klidových podmínkách; muži asi 100-150 l/min, ženy 80-100 l/min pracovní: je asi o 20 % ↓ než volní

Maximální spotřeba kyslíku = max. aerobní výkon nejvyšší v 18 letech: muži 46.5 ml/kg/min ženy 37 ml/kg/min - postupně klesá s věkem závisí na: ventilace, alveolokapilární difúze, transport oběhovým systémem, tkáňová difůze, buněčná oxidace

Dýchací systém složka transportního kardiorespiračního systému změny: - reaktivní – bezprostřední reakce organismu - adaptační – výsledek dlouhodobého opakovaného tréninku

Změny reaktivní -fáze úvodní = ↑ DF a ventilace před výkonem mechanismus: emoce (více u osob netrénovaných) a podmíněné reflexy (převládají u trénovaných osob) startovní a předstartovní stavy

Změny reaktivní -fáze průvodní= při vlastním výkonu roste DF a ventilace nejdřív rychle (fáze iniciální), →zpomalení, →při déletrvající zátěži (více než 40-60s) se může projevit mrtvý bod

mrtvý bod subjektivní příznaky = nouze o dech, svalová slabost, bolesti ve svalech, tíha a tuhnutí svalů objektivní příznaky = pokles výkonu, ↓ koordinace, narušená ekonomika dýchání, tzn. ↓DO a ventilace, ale ↑ DF, ↑ TF, ↑ TK; příčina = nedostatečná sladěnost systémů při přechodu neoxidativního metabolismu na oxidativní

druhý dech jestliže se pokračuje dále, pak příznaky mrtvého bodu mizí, → druhý dech, tzn. ↑DO, ↓ DF, ↓ TF, ↓ TK rovnovážný stav po 2-3 min méně intenzivní a po 5-6 min intenzivnější práce

Změny reaktivní -fáze následná = návrat ventilačních parametrů k výchozím hodnotám, zpočátku rychleji, postupně pomalejší Pozátěžový kyslík (kyslíkový dluh)

Změny adaptační lepší mechanika dýchání lepší plicní difůzi ↓ DF ↑ max. DO (3-5 l) ↑ VC ♂ 5-8 l, ♀ 3.5-4.5 l ↓ minutovou ventilaci při standardním zatížení, vyšší max. hodnotu ♂ 150-200 l, ♀ 100-130 l rychlejší nástup setrvalého stavu minimální až nulové projevy mrtvého bodu

Výpočet denního energetického výdeje (tréninkové jednotky)

Pásma energetické krytí Anaerobní alaktátové Anaerobní laktátové Aerobní alaktátové

příjem = výdej ± zásoby organismu

Přeměna energie-energetický výdej BM = bazální metabolismu KM = klidový metabolismus (110 - 120% BM) PM = pracovní metabolismus (130 – 30 000%BM)

Kalorimetrie PŘÍMÁ měření tělem vydané energie v podobě tepla (jen u lab. zvířat) NEPŘÍMÁ měření podle spotřeby kyslíku spotřeba O2 a intenzita zátěže jsou na sobě přímo závislé

Zdroje energetického krytí při zvyšující se intenzitě Respirační kvocient = poměr mezi vydýchaným oxidem uhličitým a spotřebovaným kyslíkem RQ sacharidů = 1 RQ = CO2 O2 1 g = 4,1 kcal RQ tuku = 0,7 1 g = 9,3 kcal (Hamar & Lipková, 2001)

Výpočet BM Kalorimetrie (nepřímá energometrie) pro praxi se používají tabulkové hodnoty, tzv. náležité hodnoty bazálního metabolismu (nál. BM) nál.BM udává průměrný energetický výdej za bazalních podmínek s přihlédnutím k věku, výšce, hmotnosti a pohlaví

Spirometrie je základní vyšetřovací metodou informující o fyziologických a patofyziologických podmínkách a hodnotách výměny vzduchu mezi zevním prostředím a plícemi některé výsledky vyšetření mohou být získány pomocí jednoduchého spirometru kvalitní hodnoty jsou však v současnosti převážně poskytovány složitějšími přístroji

Korekční faktor BTPS (body temperature, atmospheric pressure, water saturated)

Spirometrie VC - vitální kapacita = množství maximálně vydechnutého vzduchu po předchozím maximálním nádechu (muži: 4,8l, ženy 3,1l) FVC – vitální kapacita při usilovném výdechu = objem usilovného výdechu („co nejvíce a co nejrychleji“) při přechodu z max. inspira do max. exspira FEV1 – jednosekundová usilovná vitální kapacita = objem vzduchu při maximálním výdechu během první sekundy po předchozím usilovném nádechu PEF – maximální výdechová rychlost (muži: 420-720l/min, ženy: 390-480l/min) FER – průchodnost periferních průdušek (84%) Tiffeneau-index: 100 x (FEV1:FVC)

Bioelektrická impendance průchod velmi slabého střídavého (5 V, 25 kHz) elektrického proudu naším tělem proud volně prochází tekutinami ve svalové tkáni, při prostupu tukovou tkání se setkává s jejím odporem (bioelektrickou impedancí) tukové tkáně mají velmi nízkou až nulovou vodivost měření touto metodou je závislé na množství kapaliny v netukových tkání