Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.

Slides:



Advertisements
Podobné prezentace
V PRAVOÚHLÉM TROJÚHELNÍKU
Advertisements

1. ročník S O U GONIOMETRICKÉ FUNKCE PDF Poznámky pro žáky se SPU
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání • Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
POZNÁMKY ve formátu PDF
Projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR.
TRIGONOMETRIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Kateřina Linková. Dostupné z Metodického portálu ISSN: ,
Goniometrické funkce Řešení pravoúhlého trojúhelníku
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
SINUS KOSINUS. VLASTNOSTI GONIOMETRICKÝCH FUNKCÍ  Funkce sinus a kosinus patří mezi goniometrické funkce.  Goniometrické funkce tvoří skupina šesti.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Goniometrické funkce Kotangens Nutný doprovodný komentář učitele.
Goniometrické funkce.
Využití multimediálních nástrojů pro rozvoj klíčových kompetencí žáků ZŠ Brodek u Konice reg. č.: CZ.1.07/1.1.04/ Předmět : Matematika a její aplikace.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Goniometrické funkce funkce tangens a kotangens
Goniometrické funkce Kotangens ostrého úhlu
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Goniometrické funkce funkce sinus
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
V PRAVOÚHLÉM TROJÚHELNÍKU
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
IDENTIFIKÁTOR MATERIÁLU: EU
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
IDENTIFIKÁTOR MATERIÁLU: EU
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Název šablony:Inovace a zkvalitnění výuky prostřednictvím ICT zaměření VM:9. ročník – Matematika a její aplikace – Matematika – Goniometrické funkce autor.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Gymnázium, Havířov-Město, Komenského 2, p.o. Tato prezentace.
Matematický milionář Foto: autor
Funkce tangens a kotangens autor: RNDr. Jiří Kocourek
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
1 GONIOMETRICKÉ FUNKCE Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
DEFINICE GONIOMETRICKÝCH FUNKCÍ
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Základní škola T. G. Masaryka a Mateřská škola Poříčany, okr. Kolín VY_32_INOVACE_M_09 Goniometrické funkce - kosinus Zpracovala: Mgr. Květoslava Štikovcová.
Tangens a kotangens v pravoúhlém trojúhelníku (5).
Funkce sinus (8). Projekt: CZ.1.07/1.5.00/ OAJL - inovace výuky Příjemce: Obchodní akademie, odborná škola a praktická škola pro tělesně postižené,
Funkce tangens (10). Projekt: CZ.1.07/1.5.00/ OAJL - inovace výuky Příjemce: Obchodní akademie, odborná škola a praktická škola pro tělesně postižené,
PRAVOÚHLÉHO TROJÚHELNÍKU
Goniometrické funkce funkce kosinus
IDENTIFIKÁTOR MATERIÁLU: EU
Goniometrické funkce Kotangens Nutný doprovodný komentář učitele.
Goniometrické funkce Kosinus Nutný doprovodný komentář učitele.
Matematika – 7.ročník VY_32_INOVACE_
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Kateřina Linková. Dostupné z Metodického portálu ISSN: , financovaného.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
Goniometrické funkce v pravoúhlém trojúhelníku
Matematický milionář Foto: autor
Goniometrické funkce Kotangens Nutný doprovodný komentář učitele.
Goniometrické funkce Kotangens Nutný doprovodný komentář učitele.
Sinus, kosinus, tangens, kotangens
Transkript prezentace:

Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ZŠ, Týn nad Vltavou, Malá Strana

Goniometrické funkce - přehled Matematika 9. ročník Marcela Kubátová

Goniometrické fce: jsou funkce ostrého úhlu v pravoúhlém trojúhelníku pomocí nich můžeme určovat velikosti úhlů nebo délky stran

Popis pravoúhlého trojúhelníku: n m l přepona přilehlá odvěsna protilehlá odvěsna

Sinus rovnice: y = sin x definice: sinus x je poměr délky odvěsny protilehlé úhlu x ku délce přepony definičním oborem mohou být všechny velikosti úhlů ve stupních (radiánech) sin x = protilehlá odvěsna přepona

Sinus v trojúhelníku: n m l přepona protilehlá odvěsna přilehlá odvěsna

Kosinus rovnice: y = cos x definice: kosinus x je poměr délky odvěsny přilehlé úhlu x ku délce přepony definičním oborem mohou být všechny velikosti úhlů ve stupních (radiánech) cos x = přilehlá odvěsna přepona

Kosinus v trojúhelníku: c b d přepona přilehlá odvěsna protilehlá odvěsna

Tangens rovnice: y = tg x definice: tangens x je poměr délky protilehlé odvěsny úhlu x ku délce přilehlé odvěsny za x nesmíme dosadit celočíselné násobky úhlu 90 0 tg x = protilehlá odvěsna přilehlá odvěsna

Tangens v trojúhelníku: p r q přilehlá protilehlá přepona

Kotangens rovnice: y = cotg x definice: kotangens x je poměr délky přilehlé odvěsny úhlu x ku délce protilehlé odvěsny za x nesmíme dosadit celočíselné násobky úhlu 90 0 cotg x = přilehlá odvěsna protilehlá odvěsna

Kotangens v trojúhelníku: D d e f přepona přilehlá protilehlá

Všechny fce pro jeden úhel: