* 16. 7. 1996 Trojčlenka příklady Matematika – 7. ročník *

Slides:



Advertisements
Podobné prezentace
Slovní úlohy o společné práci
Advertisements

Slovní úlohy řešené rovnicí II.
Střední odborné učiliště Liběchov Boží Voda Liběchov Registrační číslo projektu:CZ.1.07/1.5.00/ Šablona: IV/2 Inovace a zkvalitnění výuky.
Digitalizace výuky Příjemce
Trojčlenka Ing. Kamila Kočová
Přímá a nepřímá úměrnost
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
Autor: Mgr. Marie Smolíková Datum: Ročník: 7.
Slovní úlohy o společné práci
Slovní úlohy na společnou práci
Nepřímá úměrnost Trojčlenka
Přímá úměrnost - opakování
Trojčlenka.
Střední škola Oselce Škola: SŠ Oselce, Oselce 1, Nepomuk, Projekt: Registrační číslo: CZ.1.07/1.5.00/ Název: Modernizace.
Přímá úměrnost Trojčlenka
Slovní úlohy řešené TROJČLENKOU
Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný
Trojčlenka Prezentace je zaměřená na procvičování slovních úloh řešených trojčlenkou. Obsahuje 6 řešených příkladů i s obrázky. © Eva Černá Autor © Mgr.
Slovní úloha o společné práci
TROJČLENKA Řešení praktických úloh o úměrných veličinách.
* Graf přímé úměrnosti Matematika – 7. ročník *
PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST
Výpočty přímé a nepřímé úměrnosti.
Střední škola Oselce Škola: SŠ Oselce, Oselce 1, Nepomuk, Projekt: Registrační číslo: CZ.1.07/1.5.00/ Název: Modernizace.
Lineární rovnice – 1. část
Slovní úlohy o společné práci
Přímá a nepřímá úměrnost
Úměrnosti Nepřímá úměrnost. Zavedení pojmu nepřímá úměrnost.
Téma: Trojčlenka Vytvořila: Mgr. Martina Bašová VY_32_Inovace/2_098.
Slovní úlohy řešené soustavou rovnic
Matematika a její aplikace Slovní úlohy na 2. stupni základní školy Slovní úloha – přímá úměrnost 2 VY_42_INOVACE_10 Sada 4 Základní škola T. G. Masaryka,
Střední odborné učiliště Liběchov Boží Voda Liběchov Registrační číslo projektu:CZ.1.07/1.5.00/ Šablona: IV/2 Inovace a zkvalitnění výuky.
Gravitační síla a hmotnost tělesa
Poměr, úměra atd.… tercie - opakování.
Přímá úměrnost.
Název školyIntegrovaná střední škola technická, Vysoké Mýto, Mládežnická 380 Číslo a název projektuCZ.1.07/1.5.00/ Inovace vzdělávacích metod EU.
NEPŘÍMÁ ÚMĚRNOST.  Při budování bazénu bylo vykopáno 10 t zeminy. Do jednoho vozíku se vejde 200 kg zeminy. Kolikrát by musel zeminu vyvážet jeden.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
* Nepřímá úměrnost Matematika – 7. ročník *
* Přímá úměrnost Matematika – 7. ročník *
Graf nepřímé úměrnosti
Trojčlenka v přímé úměrnosti
Přímá úměrnost Slovní úlohy.
Graf nepřímé úměrnosti
Troj č lenka Ing. Kamila Kočová Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným.
Matematika a její aplikace Slovní úlohy na 2. stupni základní školy Slovní úloha – nepřímá úměrnost 1 VY_42_INOVACE_09 Sada 4 Základní škola T. G. Masaryka,
Nep ř ímá úm ě rnost Pojem nep ř ímá úm ě rnost Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR.
Elektronické učební materiály - II. stupeň Matematika Autor: Mgr. Miluše Džuberová Řešení slovních úloh trojčlenkou Kolik benz í nu potřebuji na cestu?
U příkladů, kde se vyskytují procenta, rozlišujeme tři základní veličiny: - základ (100%)... z - procentovou část... č - počet procent... p První dvě.
Graf nepřímé úměrnosti
Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Jihlava Šablona 32 VY_32_INOVACE_072.MAT.01 Hospodářské výpočty 2 – Trojčlenka.
Digitální učební materiál zpracovaný v rámci projektu
Trojčlenka Ing. Kamila Kočová
Trojčlenka Ing. Kamila Kočová
Grafy přímé a nepřímé úměrnosti
Základní škola T. G. Masaryka, Bojkovice, okres Uherské Hradiště
Přímá a nepřímá úměrnost
Elektronické učební materiály – II. stupeň Matematika 7
NÁZEV ŠKOLY: Základní škola Strančice, okres Praha - východ
VY_32_INOVACE_043_Úměrnost
ÚMĚRA– výpočet neznámého členu úměry
VY_32_INOVACE_044_Trojčlenka
OZNAČENÍ MATERIÁLU: VY_32_INOVACE_88_M7
Přímá úměrnost Ing. Kamila Kočová
ZŠ Týnec nad Labem AUTOR: Martina Dostálová
Slovní úlohy na společnou práci
Úměra – úměrnost (výpočty přímé a nepřímé úměrnosti)
Základní škola Ústí nad Labem, Anežky České 702/17, příspěvková organizace   Číslo projektu: CZ.1.07/1.4.00/ Název projektu: „Učíme lépe a moderněji“
Úměrnosti Nepřímá úměrnost. Zavedení pojmu nepřímá úměrnost.
* Přímá úměrnost Matematika – 7. ročník *
Transkript prezentace:

* 16. 7. 1996 Trojčlenka příklady Matematika – 7. ročník *

Přímá úměrnost Definice je taková závislost proměnné y na proměnné x, pro kterou platí: Kolikrát se zvětší hodnota x, tolikrát se zvětší hodnota y. Kolikrát se zmenší hodnota x, tolikrát se zmenší hodnota y. Hodnoty y a hodnoty x se mění ve stejných poměrech. Říkáme, že proměnná y je přímo úměrná proměnné x.

Nepřímá úměrnost Definice je taková závislost proměnné y na proměnné x, pro kterou platí: Kolikrát se zvětší hodnota x, tolikrát se zmenší hodnota y. Kolikrát se zmenší hodnota x, tolikrát se zvětší hodnota y. Hodnoty y a hodnoty x se mění v převrácených poměrech. Říkáme, že proměnná y je nepřímo úměrná proměnné x.

Přímá úměrnost Trojčlenka Trojčlenkou nazýváme úlohu, která obsahuje dvojice na sobě závislých veličin (přímo nebo nepřímo), z nichž tři údaje jsou známé a čtvrtý je třeba vypočítat. 12 vajec …..………………………….. 36 Kč 17 vajec …..………………………….. x Kč Veličiny se zapíší do určitého schématu (stejné veličiny pod sebou), šipkami se vyjádří příslušné závislosti (souhlasně orientovanými šipkami přímá úměrnost, nesouhlasně orientovanými šipkami nepřímá úměrnost). Z praktických důvodů pro snadnější výpočet je vhodné začínat psát šipky vždy u proměnné x. Trojčlenku můžeme řešit různými způsoby, nejčastější je pomocí úměry nebo „přechodem přes jednotku”.

Nepřímá úměrnost Trojčlenka Trojčlenkou nazýváme úlohu, která obsahuje dvojice na sobě závislých veličin (přímo nebo nepřímo), z nichž tři údaje jsou známé a čtvrtý je třeba vypočítat. 24 čerpadel ………………………….. 5 hodin 10 čerpadel ………………………….. x hodin Veličiny se zapíší do určitého schématu (stejné veličiny pod sebou), šipkami se vyjádří příslušné závislosti (souhlasně orientovanými šipkami přímá úměrnost, nesouhlasně orientovanými šipkami nepřímá úměrnost). Z praktických důvodů pro snadnější výpočet je vhodné začínat psát šipky vždy u proměnné x. Trojčlenku můžeme řešit různými způsoby, nejčastější je pomocí úměry nebo „přechodem přes jednotku”.

Trojčlenka Příklady Ze sadu o výměře 4,5 hektaru se získá 11,7 tuny jablek. Jak velký by musel být sad, aby se sklidilo 24,7 tuny jablek? 11,7 tuny jablek ….……………….. 4,5 ha 24,7 tuny jablek …………………….. x ha 1) Správně zapsat odpovídající veličiny pod sebe. x : 4,5 = 24,7 : 11,7 2) Rozhodneme o druhu závislosti. 3) Zakreslíme šipky (u nepřímé úměrnosti opačným směrem). 11,7 · x = 24,7 · 4,5 4) Podle směru šipek sestavíme úměru. 5) Vynásobíme vnější a vnitřní členy úměry a zapíšeme je do součinu.

Trojčlenka Příklady Ze sadu o výměře 4,5 hektaru se získá 11,7 tuny jablek. Jak velký by musel být sad, aby se sklidilo 24,7 tuny jablek? 11,7 tuny jablek ….……………….. 4,5 ha 24,7 tuny jablek …………………….. x ha 6) Vynásobíme čísla na pravé straně rovnice. x : 4,5 = 24,7 : 11,7 7) Výsledek vydělíme číslem u proměnné na levé straně. 11,7 · x = 24,7 · 4,5 11,7 · x = 111,15 8) Zapíšeme výsledek s jednotkami x = 111,15 : 11,7 9) Zapíšeme slovní odpověď. x = 9,5 Ke sklizení 24,7 t jablek je třeba sad o výměře 9,5 hektaru. x = 9,5 hektaru

Trojčlenka Příklady Jednu zakázku zvládnou čtyři stroje za 324 hodiny. Za jakou dobu by tutéž zakázku zvládlo 9 strojů? 4 stroje ………………………….. 324 hodin 9 strojů ………………………….. x hodin 1) Správně zapsat odpovídající veličiny pod sebe. x : 324 = 4 : 9 2) Rozhodneme o druhu závislosti. 3) Zakreslíme šipky (u nepřímé úměrnosti opačným směrem). 9 · x = 324 · 4 4) Podle směru šipek sestavíme úměru. 5) Vynásobíme vnější a vnitřní členy úměry a zapíšeme je do součinu.

Trojčlenka Příklady Jednu zakázku zvládnou čtyři stroje za 324 hodiny. Za jakou dobu by tutéž zakázku zvládlo 9 strojů? 4 stroje ………………………….. 324 hodin 9 strojů ………………………….. x hodin 6) Vynásobíme čísla na pravé straně rovnice. x : 324 = 4 : 9 7) Výsledek vydělíme číslem u proměnné na levé straně. 9 · x = 324 · 4 9 · x = 1 296 8) Zapíšeme výsledek s jednotkami x = 1 296 : 9 9) Zapíšeme slovní odpověď. x = 144 x = 144 hodin 9 strojů zvládne zakázku za 144 hodin.

Trojčlenka Příklad č. 1 13 dělníků 1) Osm dělníků provede úklid staveniště za 6,5 hodiny. Kolik dělníků by muselo pracovat, aby byl úklid hotov již za 4 hodiny ? 13 dělníků

Trojčlenka Příklad č. 2 39,2 hodiny (39 h a 12 min) 2) Bazén by se napustil třemi stejnými přívody za 52 hodin. Po 20 hodinách byly přidány ještě další dva přívody. Za kolik hodin se bazén napustí? 39,2 hodiny (39 h a 12 min)

Trojčlenka Příklad č. 3 20 dní 3) Dvanáct kopáčů provede zemní práce za 15 dní. Za jak dlouho by provedlo tyto zemní práce 9 kopáčů? 20 dní

Trojčlenka Příklad č. 4 6 kg semínek 4) Z půl kilogramu lněného semínka se získá 125 g oleje. Z kolika kg semínek se získá 1,5 kg oleje? 6 kg semínek

Trojčlenka Příklad č. 5 76,8 h = 76 h 48 min 5) Osm zaměstnanců splní zakázku za 65 hodin. Po 17 hodinách museli tři zaměstnanci odejít na jinou práci. Za kolik dalších hodin bude zakázka splněna? 76,8 h = 76 h 48 min

Trojčlenka Příklad č. 6 14 metrů 6) Svislá dvoumetrová tyč vrhá stín dlouhý 3,8 m dlouhý. Jak vysoký je topol, jehož stín je v tutéž dobu dlouhý 26,6 m? 14 metrů

Trojčlenka Příklad č. 7 1,5 hodiny 7) Čerpadlem o výkonu 25 litrů za sekundu se naplní nádrž za 1 hodinu a 12 minut. Za jak dlouho se naplní nádrž čerpadlem o výkonu 20 litrů za sekundu ? 1,5 hodiny

Trojčlenka Příklad č. 8 36 beden 8) Na vůz bylo naloženo 84 beden o hmotnosti 15 kg. Kolik beden o hmotnosti 35 kg mohou naložit, má-li být celkový náklad stejný ? 36 beden

Trojčlenka Příklad č. 9 18 dní 9) Eva vyšívá ubrus. Kdyby vyšívala denně tři čtvrtě hodiny, byla by hotová za 8 dní. Za kolik dní bude s vyšíváním hotová, bude-li denně vyšívat jen 20 minut ? 18 dní

Trojčlenka Příklad č. 10 1 540 kg 10) Lano o třech drátech snese zatížení 420 kg. Jak velké zatížení snese lano z jedenácti drátů ? 1 540 kg