Elektrický proud v polovodičích

Slides:



Advertisements
Podobné prezentace
Vznik PN přechodu.
Advertisements

Vedení elektrického proudu v polovodičích
Elektrický proud v kapalinách
Kruhový děj s ideálním plynem
Logaritmus Podmínky používání prezentace © RNDr. Jiří Kocourek 2013
POHYB V GRAVITAČNÍM POLI
Tření Podmínky používání prezentace © RNDr. Jiří Kocourek 2013
Elektromagnetická indukce
Kondenzátor Podmínky používání prezentace © RNDr. Jiří Kocourek 2013
FUNKCE SHORA A ZDOLA OMEZENÁ
Skalární součin a úhel vektorů
TEPLOTNÍ ROZTAŽNOST PEVNÝCH LÁTEK
Polovodiče typu N a P Si Si Si Si Si Si Si Si Si
Polovodičová dioda (Učebnice strana 66 – 70)
INVERZNÍ FUNKCE Podmínky používání prezentace
Vnitřní energie, práce, teplo
PEVNÉ LÁTKY Podmínky používání prezentace © RNDr. Jiří Kocourek 2013
Orbis pictus 21. století Tato prezentace byla vytvořena v rámci projektu.
Elektrický proud Podmínky používání prezentace
Střídavý proud Podmínky používání prezentace
Energetika Podmínky používání prezentace © RNDr. Jiří Kocourek 2013
Plynné skupenství Podmínky používání prezentace
GRAVITACE Podmínky používání prezentace © RNDr. Jiří Kocourek 2013
Příměsové polovodiče.
Vedení elektrického proudu v látkách I
ROVNOMĚRNÝ POHYB PO KRUŽNICI
OPTICKÉ PŘÍSTROJE 1. Lupa Podmínky používání prezentace
Polovodiče typu N a P Autor: Lukáš Polák Pokračovat.
FYZIKA 9. ročník POLOVODIČE TYPU N A P
POLOVODIČE.
Tato prezentace byla vytvořena
Vedení elektrického proudu v polovodičích 2
ČÍSELNÉ MNOŽINY, INTERVALY
POLOVODIČE Polovodiče jsou pevné látky, které jsou určitých okolností vodiči a za jiných okolností izolanty. Z hlediska využití v praxi jsou nejdůležitějšími.
Vodič a izolant v elektrickém poli
Struktura atomu Podmínky používání prezentace
OPTICKÉ PŘÍSTROJE 3. Dalekohledy Podmínky používání prezentace
VLASTNÍ POLOVODIČE.
Výuková centra Projekt č. CZ.1.07/1.1.03/
28. Elektrický proud v polovodičích
Historie polovodičových součástek I.
9. ročník Polovodiče Polovodiče typu P a N.
Tato prezentace byla vytvořena
NEVLASTNÍ POLOVODIČE.
Elektromagnetické vlnění
Je-li materiál polovodič, vede proud?
Optické zobrazování © RNDr. Jiří Kocourek 2013 Podmínky používání prezentace Stažení, instalace na jednom počítači a použití pro soukromou.
Elektrické pole Podmínky používání prezentace
POLOVODIČE Polovodič je látka, jehož elektrická vodivost závisí na vnějších nebo vnitřních podmínkách a dá se změnou těchto podmínek snadno ovlivnit. Příkladem.
ELEKTRICKÝ PROUD V POLOVODIČÍCH
Si, Ge, C, Se, Te, PbS, hemoglobin, chlorofyl
Číselné obory Podmínky používání prezentace © RNDr. Jiří Kocourek 2013
DEFORMACE PEVNÝCH TĚLES
(pravidelné mnohostěny)
Polovodiče typu P a N Polovodičová dioda
Vznik přechodu P- N Přechod P- N vznikne spojením krystalů polovodiče typu P a polovodiče typu N: “díra“ elektron.
Mocniny a odmocniny Podmínky používání prezentace
TRIGONOMETRIE © RNDr. Jiří Kocourek 2013 Podmínky používání prezentace Stažení, instalace na jednom počítači a použití pro soukromou potřebu jednoho uživatele.
ELEKTRONIKA Vodivost polovodiče. Výukový materiál Číslo projektu: CZ.1.07/1.5.00/ Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT.
 ČÍSLO PROJEKTU: 1.4 OP VK  NÁZEV: VY_32_INOVACE_01  AUTOR: Mgr., Bc. Daniela Kalistová  OBDOBÍ:  ROČNÍK: 9  VZDĚLÁVACÍ OBLAST: Člověk a.
Kondenzátor Podmínky používání prezentace © RNDr. Jiří Kocourek 2017
Elektrické napětí, elektrický potenciál
POLOVODIČE Polovodiče jsou pevné látky, které jsou určitých okolností vodiči a za jiných okolností izolanty. Z hlediska využití v praxi jsou nejdůležitějšími.
POLOVODIČE SVĚT ELEKTRONIKY.
Vedení elektrického proudu v polovodičích
VLASTNOSTI FUNKCÍ FUNKCE SUDÁ A LICHÁ Podmínky používání prezentace
Elektrický proud v polovodičích
VLASTNÍ POLOVODIČE.
FUNKCE ROSTOUCÍ A KLESAJÍCÍ
MAXIMUM A MINIMUM FUNKCE
Transkript prezentace:

Elektrický proud v polovodičích Podmínky používání prezentace Stažení, instalace na jednom počítači a použití pro soukromou potřebu jednoho uživatele je zdarma. Použití pro výuku jako podpůrný nástroj pro učitele či materiál pro samostudium žáka, rovněž tak použití jakýchkoli výstupů (obrázků, grafů atd.) pro výuku je podmíněno zakoupením licence pro užívání software E-učitel příslušnou školou. Cena licence je 270,- Kč ročně a opravňuje příslušnou školu k používání všech aplikací pro výuku zveřejněných na stránkách www.eucitel.cz. Na těchto stránkách je rovněž podrobné znění licenčních podmínek a formulář pro objednání licence. Pro jiný typ použití, zejména pro výdělečnou činnost, publikaci výstupů z programu atd., je třeba sjednat jiný typ licence. V tom případě kontaktujte autora (info@eucitel.cz) pro dojednání podmínek a smluvní ceny. OK © RNDr. Jiří Kocourek 2013

Elektrický proud v polovodičích © RNDr. Jiří Kocourek 2013

Polovodič Látka, jejíž měrný elektrický odpor (rezistivita) je při obvyklých teplotách mnohem menší než u izolantů, ale zase mnohem větší než u kovů.

Polovodič Látka, jejíž měrný elektrický odpor (rezistivita) je při obvyklých teplotách mnohem menší než u izolantů, ale zase mnohem větší než u kovů. Kovy .......... r ≈ 10-8 – 10-6 W·m Izolanty ..... r ≈ 1010 W·m Polovodiče .......... r ≈ 10-4 – 108 W·m

Polovodič Látka, jejíž měrný elektrický odpor (rezistivita) je při obvyklých teplotách mnohem menší než u izolantů, ale zase mnohem větší než u kovů. Kovy .......... r ≈ 10-8 – 10-6 W·m Izolanty ..... r ≈ 1010 W·m Polovodiče .......... r ≈ 10-4 – 108 W·m Příklady: křemík (Si), germanium (Ge), selen (Se), telur (Te), uhlík - grafit (C), některé sloučeniny (PbS, CdS, GaAs, atd.) křemík germanium grafit

Model vodivosti v čistém polovodiči (vlastní vodivost) Při nízkých teplotách jsou atomy vázány prostřednictvím vazebných elektronů; nejsou zde téměř žádné volné nosiče náboje. Polovodič se chová téměř jako izolant.

Model vodivosti v čistém polovodiči (vlastní vodivost) Při vyšších teplotách (např. již při pokojové teplotě) se některé elektrony uvolňují z vazeb a pohybují se volně podobně jako v kovu. V místě, odkud se elektron uvolnil vznikne oblast s nedostatkem záporného (a tedy s přebytkem kladného) náboje – díra.

Model vodivosti v čistém polovodiči (vlastní vodivost) Díry se mohou rovněž chovat jako volné nosiče náboje. Elektrony ze sousedních atomů mohou zaplňovat díry. Výsledek je stejný, jako by se kladné díry pohybovaly opačným směrem.

E Model vodivosti v čistém polovodiči (vlastní vodivost) Díry se mohou rovněž chovat jako volné nosiče náboje. Elektrony ze sousedních atomů mohou zaplňovat díry. Výsledek je stejný, jako by se kladné díry pohybovaly opačným směrem. E

E Model vodivosti v čistém polovodiči (vlastní vodivost) Díry se mohou rovněž chovat jako volné nosiče náboje. Elektrony ze sousedních atomů mohou zaplňovat díry. Výsledek je stejný, jako by se kladné díry pohybovaly opačným směrem. E

E Model vodivosti v čistém polovodiči (vlastní vodivost) Díry se mohou rovněž chovat jako volné nosiče náboje. Elektrony ze sousedních atomů mohou zaplňovat díry. Výsledek je stejný, jako by se kladné díry pohybovaly opačným směrem. E

Užití čistých polovodičů Termistor Při vyšší teplotě vzniká více párů elektron – díra, zvyšuje se počet volných nosičů náboje, snižuje se odpor termistoru. Při snížení teploty převažuje opačný proces (rekombinace – „vyplňování“ děr volnými elektrony), odpor se zvyšuje. R polovodič termistor kov T schematická značka Využití: digitální teploměry, regulace teploty

Užití čistých polovodičů Fotorezistor Elektrony a díry vznikají účinkem světelného záření. Čím více je fotorezistor osvětlen, tím menší má odpor. schematická značka fotorezistor Využití: ovládání dveří, zabezpečovací zařízení, expozimetry ve fotoaparátech atd.

Model vodivosti v polovodiči s příměsí Elektronová vodivost – polovodič typu N: Do krystalové mřížky polovodiče je přidána příměs prvku s větším počtem valenčních elektronů (např. do křemíku se čtyřmi valenčními elektrony je přidán fosfor, astat nebo antimon s pěti). Tyto příměsi se nazývají donory (dárci).

Model vodivosti v polovodiči s příměsí Elektronová vodivost – polovodič typu N: Do krystalové mřížky polovodiče je přidána příměs prvku s větším počtem valenčních elektronů (např. do křemíku se čtyřmi valenčními elektrony je přidán fosfor, astat nebo antimon s pěti). Tyto příměsi se nazývají donory (dárci). Čtyři valenční elektrony se zapojí do vazby se sousedními atomy; pátý je velmi slabě vázán a již při nízkých teplotách se uvolňuje a volně pohybuje krystalem.

Model vodivosti v polovodiči s příměsí Elektronová vodivost – polovodič typu N: Do krystalové mřížky polovodiče je přidána příměs prvku s větším počtem valenčních elektronů (např. do křemíku se čtyřmi valenčními elektrony je přidán fosfor, astat nebo antimon s pěti). Tyto příměsi se nazývají donory (dárci). Čtyři valenční elektrony se zapojí do vazby se sousedními atomy; pátý je velmi slabě vázán a již při nízkých teplotách se uvolňuje a volně pohybuje krystalem. V krystalu je daleko více elektronů než děr. Elektrony – většinové (majoritní) nosiče náboje Díry – menšinové (minoritní) nosiče náboje

Model vodivosti v polovodiči s příměsí Děrová vodivost – polovodič typu P: Do krystalové mřížky polovodiče je přidána příměs prvku s menším počtem valenčních elektronů (např. do křemíku se čtyřmi valenčními elektrony je přidán bór, hliník, galium nebo indium se třemi). Tyto příměsi se nazývají akceptory (příjemci).

Model vodivosti v polovodiči s příměsí Děrová vodivost – polovodič typu P: Do krystalové mřížky polovodiče je přidána příměs prvku s menším počtem valenčních elektronů (např. do křemíku se čtyřmi valenčními elektrony je přidán bór, hliník, galium nebo indium se třemi). Tyto příměsi se nazývají akceptory (příjemci). Všechny tři valenční elektrony se zapojí do vazby se sousedními atomy; jedna vazba zůstane neobsazená – vzniká díra.

Model vodivosti v polovodiči s příměsí Děrová vodivost – polovodič typu P: Do krystalové mřížky polovodiče je přidána příměs prvku s menším počtem valenčních elektronů (např. do křemíku se čtyřmi valenčními elektrony je přidán bór, hliník, galium nebo indium se třemi). Tyto příměsi se nazývají akceptory (příjemci). Všechny tři valenční elektrony se zapojí do vazby se sousedními atomy; jedna vazba zůstane neobsazená – vzniká díra. V krystalu je daleko více děr než elektronů. Díry – většinové (majoritní) nosiče náboje Elektrony – menšinové (minoritní) nosiče náboje

P – N přechod Spojení polovodičů typu P a N N P

P – N přechod Spojení polovodičů typu P a N

P – N přechod Spojení polovodičů typu P a N Při dotyku obou polovodičů začnou elektrony pronikat tepelným pohybem (difúzí) do polovodiče typu P.

P – N přechod Spojení polovodičů typu P a N Při dotyku obou polovodičů začnou elektrony pronikat tepelným pohybem (difúzí) do polovodiče typu P. Tyto elektrony „vyplní“ díry (rekombinují) a podél spoje se vytvoří tenká vrstva téměř bez volných nosičů náboje – hradlová vrstva.

P – N přechod E Spojení polovodičů typu P a N Při dotyku obou polovodičů začnou elektrony pronikat tepelným pohybem (difúzí) do polovodiče typu P. Tyto elektrony „vyplní“ díry (rekombinují) a podél spoje se vytvoří tenká vrstva téměř bez volných nosičů náboje – hradlová vrstva. Přebytek elektronů (záporných nábojů) v okrajové části polovodiče typu P a jejich nedostatek na okraji polovodiče typu N vede ke vzniku elektrického pole, které brání pronikání dalších elektronů do hradlové vrstvy.

Polovodičová dioda Součástka s jedním P-N přechodem

Polovodičová dioda Součástka s jedním P-N přechodem Zapojení v závěrném směru – elektrony jsou přitahovány kladným pólem zdroje, díry jsou „přitahovány“ záporným pólem. Nosiče náboje se tedy ještě více vzdalují od P-N přechodu – hradlová vrstva se zvětšuje.

Polovodičová dioda Součástka s jedním P-N přechodem Zapojení v závěrném směru – elektrony jsou přitahovány kladným pólem zdroje, díry jsou „přitahovány“ záporným pólem. Nosiče náboje se tedy ještě více vzdalují od P-N přechodu – hradlová vrstva se zvětšuje. Odpor diody je velmi vysoký, proud obvodem téměř neprochází.

Polovodičová dioda Součástka s jedním P-N přechodem

Polovodičová dioda Součástka s jedním P-N přechodem Zapojení v propustném směru – elektrony i díry jsou vtlačovány do prostoru P-N přechodu – hradlová vrstva se zmenšuje, při větším napětí zaniká.

Polovodičová dioda Součástka s jedním P-N přechodem Zapojení v propustném směru – elektrony i díry jsou vtlačovány do prostoru P-N přechodu – hradlová vrstva se zmenšuje, při větším napětí zaniká. Nosiče náboje jsou v celém objemu diody, odpor se výrazně snižuje, proud obvodem prochází.

Polovodičová dioda schematická značka Součástka s jedním P-N přechodem diody Využití: usměrňování střídavého proudu, ochrana proti náhodnému přepólování zdroje

Obrázky, animace a videa použité v prezentacích E-učitel jsou buď originálním dílem autora, nebo byly převzaty z volně dostupných internetových stránek.