Bazofily a mastocyty a jejich význam v imunitních reakcích

Slides:



Advertisements
Podobné prezentace
MEZIBUNĚČNÁ KOMUNIKACE
Advertisements

Slizniční a kožní imunitní systém
Imunitní odpověď založená na protilátkách
Specifická buněčná imunita T-lymfocyty
Selhání imunitní tolerance: alergie a autoimunita
IMUNOTOXIKOLOGIE Antigenně-specifické imunitní reakce
Vyšetření parametrů buněčné imunity
Nespecifické složky buněčné imunity
Základní imunitní mechanismy
SPECIFICKÁ BUNĚČNÁ IMUNITA.
Imunitní systém a jeho význam pro homeostázu organismu,

Nespecifické složky humorální imunity
Mechanismy nespecifické imunity
Somatologie Mgr. Naděžda Procházková
Mechanismy specifické imunity
Imunitní systém J. Ochotná
Antiinfekční imunita.
HLA systém (MHC glykoproteiny)
Imunita Cholera, 19. století.
Klinická biochemie zánětlivých procesů
Protinádorová imunita
Slizniční a kožní imunitní systém
NK buňky Interferony.
RECEPTORY CYTOKINŮ A PŘENOS SIGNÁLU
CHEMIE IMUNITNÍCH REAKCÍ
HLA systém (MHC glykoproteiny)
8. VZNIK REPERTOÁRŮ ANTIGENNĚ SPECIFICKÝCH RECEPTORŮ.
Imunitní systém J. Ochotná
Způsoby mezibuněčné komunikace
Řízení imunitního systému Kurs Imunologie. Hlavní histokompatibilní systém (MHC) objeven v souvislosti s transplantacemi starší termín: HLA dvě hlavní.
T lymfocyty J. Ochotná.
Obrana proti extracelulárním patogenům
T lymfocyty J. Ochotná.
Protiinfekční imunita 2
Systém HLA a prezentace antigenu
Histokompatibilní systém
Prof. RNDr. Ilona Hromadníková, PhD.
Imunitní mechanismy zánětu (lokální a systémová reakce)
Komplementový systém a nespecifická imunita
Nespecifické složky M. Průcha
NK buňky Interferony.
Kožní a slizniční imunitní systém
21.Bazofily a mastocyty, význam v imunitních reakcích
Lymfoidní buňky periferní krve
T lymfocyty Jan Novák.
Možnosti zevního ovlivnění imunitního systému
Bazofily a mastocyty a jejich význam v imunitních reakcích
Imunologie Martin Liška.
Protinádorová imunita Jiří Jelínek. Imunitní systém vs. nádor imunitní systém je poslední přirozený nástroj organismu jak eliminovat vlastní buňky které.
Komplement J. Ochotná. Komplement  humorální složka nespecifické imunity  pomáhá odstranit mikroorganismy a vlastní pozměněné buňky (apoptotické buňky)
9. HLA systém (třídy, funkce, polymorfismus, typizace). 10. Vazba peptidů s MHC a antigenní prezentace (mechanismus, význam). 11. T lymfocyty (vývoj, selekce,
Fyziologické imunitní regulační mechanismy. Regulace antigenem  Vyvolání a vyhasnutí imunitní odpovědi  Afinitní maturace B lymfocytů  Udržení imunologické.
Základní příznaky onemocnění imunitního systému Doc.MUDr.Kateřina Štechová, Ph.D. Obrázky a další materiály potenc.problemtaické stran autorských.
Možnosti léčebného ovlivnění imunitního systému
HLA systém, antigen-prezentující buňky, B-lymfocyty, primární a sekundární imunitní orgány, slizniční imunitní systém Martin Liška.
HLA - systém Marcela Vlková.
KOMPLEMENTOVÝ SYSTÉM.
IMUNOTOXIKOLOGIE Primární imunitní reakce, zánět
Zánět mechanismy a projevy zánětlivé reakce Jaroslava Dušková
Lékařská mikrobiologie I Specifická imunita
Laboratorní diagnostika
Bazofily a mastocyty a jejich význam v imunitních reakcích
Bazofily a mastocyty a jejich význam v imunitních reakcích
Vyšetření parametrů buněčné imunity
Bazofily a mastocyty a jejich význam v imunitních reakcích
8. Přirození zabíječi, jejich charakteristika a funkce. Interferony.
Václav Hořejší Ústav molekulární genetiky AV ČR IMUNITNÍ SYSTÉM vs
12. HLA systém, genetický základ Způsoby prezentace antigenu.
12. HLA systém, genetický základ Způsoby prezentace antigenu.
Transkript prezentace:

Bazofily a mastocyty a jejich význam v imunitních reakcích

Mastocyty ( žírné buňky) Slizniční mastocyty – ve sliznicích dýchacího a gasrtointestinálního traktu, produkují histamin, serotonin, heparin, tryptázu,leukotrien C4…, účastní se při parazitózách a při alergiích Pojivové mastocyty – v pojivové tkáni, produkují tryptázu, chymázu, PGD2…, jsou zmnoženy při fibróze, při parazitózách a alergiích se neúčastní

Funkce mastocytů obrana proti parazitárním infekcím za patologických okolností jsou zodpovědné za časný typ přecitlivělosti (imunopatologická reakce typu I) uplatňují se při zánětu, při angiogenezi, při remodelaci tkání regulace imunitní odpovědi

Aktivace mastocytů Žírné buňky mohou být stimulovány k degranulaci prostřednictvím - propojením Fc receptorů pro IgE - anafylatoxiny (C3a, C4a, C5a) - přímého poškození (opiáty, alkohol a některá antibiotika)

Aktivace mastocytů prostřednictvím IgE Po navázání multivalentního antigenu ( mnohobuněčného parazita) pomocí IgE na vysokoafinní Fc receptor pro IgE (FcRI) dojde k agregaci několika molekul FcRI Iniciace degranulace mastocytu ( fúze cytoplazmatických granulí s povrchovou membránou a uvolnění jejich obsahu) Aktivace metabolismu kyseliny arachidonové (leukotrien C4, prostaglandin PGD2) Zahájení produkce cytokinů (TNF, TGF, IL-4,5,6…)

Aktivace mastocytů prostřednictvím IgE

Sekreční produkty mastocytů cytoplazmatická granula: hydrolytické enzymy, proteoglykany (heparin, chondroitinsulfát), biogenní aminy (histamin,serotonin) Histamin způsobuje vasodilataci, zvýšení vaskulární permeability, erytém, edém, svědění, kontrakci hladké svaloviny bronchů, zvýšení peristaltiky střev, zvýšení sekrece hlenu slizničními žlázkami v respiračním traktu a GITu (napomáhá eliminaci parazita) Metabolity kys. arachidonové (leukotrien C4, prostaglandin PGD2) Cytokiny (TNF, TGF, IL-4,5,6…)

Úloha mastocytů při rozvoji alergické reakce

Bazofily diferencují se z myeloidního prekurzoru a vstupují do krevního oběhu bývají považovány za cirkulující formu mastocytů receptorovou výbavou, obsahem granul, mechanismy stimulace a funkcemi jsou velmi podobné mastocytům jsou zodpovědné za vznik anafylaktického šoku

Imunitní mechanismy zánětu (lokální a systémová reakce)

Zánět Je souhrn fyziologických reakcí na porušení integrity organismu, které vedou k ochraně proti infikování poškozeného místa, k lokalizaci poškození a jeho zhojení. První signály k rozvoji zánětlivých reakcí pocházejí od mastocytů, fagocytů a od látek uvolněných z poškozených buněk a součástí mezibuněčné hmoty.

Zánět - fyziologická obranná reakce - obvykle odezní bez následků, poškozená tkáň se zcela zhojí) - patologický zánět – chronický, alergický, autoimunitní Odpověď organismu - lokální - systémová

Lokální odpověď organismu na zánět Projevy - bolest (dolor), teplo (calor), zčervenání (rubor), otok (tumor) a ztrátou funkce (funkcio laesa)

Lokální zánět * zvýšení permeability cév ( vazoaktivní aminy, složky komplementu C3a, C5a, leukotrieny; otok v místě zánětu ) * zvýšení exprese adhezivních molekul na endoteliích * aktivace koagulačního, fibrinolytického, komplementového a kininového systému * ovlivnění místních nervových zakončení ( prostaglandiny, bolest ) * změny regulace teploty ( IL- 1, IL-6, TNF, prostaglandiny )

Lokální zánětlivá reakce

Systémová odpověď na zánět Systémová odpověď na zánět * je závislá na rozsahu poškození a délce trvání lokálního zánětu * horečka (prozánětlivé cytokiny TNF, IL-1, IFN stimulují hypotalamové centrum termoregulace) * mobilizace tkáňového metabolismu * indukce exprese Hsp (heat-shock-proteins; fungují jako chaperony) * produkce proteinů akutní fáze (CRP, SAP, C4, C5; opsonizace a aktivace komplementu)

* zvýšená jaterní syntéza některých sérových transportních proteinů (ceruloplasmin, transferin) * zvýšená syntéza proteázových inhibitorů (makroglobulín) * leukocytóza Septický šok – při masivním průniku mikroorganismů do krevního oběhu Anafylaktický šok – při degranulaci bazofilů a aktivaci komplementu alergenem

Reparace poškozené tkáně - eliminace poškozených buněk fagocyty - aktivace fibroplastických mechanismů - aktivace angiogeneze - regenerace a remodelace tkání

Fyziologické imunitní regulační mechanismy

Regulace antigenem Vyvolání a vyhasnutí imunitní odpovědi Afinitní maturace B lymfocytů Udržení imunologické paměti Antigenní kompetice Prahová hustota komplexu MHC gp II-Ag na APC

Regulace protilátkami Protilátky kompetují s BCR o antigen (negativní regulátor stimulace B lymfocytů) Imunokomplexy s IgG se váží na B lymfocyt na BCR a FcgR, důsledkem je blokování aktivace B lymfocytů Zatím je nejasný význam regulace pomocí idiotypové sítě

Regulace cytokiny a mezibuněčným kontaktem Interakce APC - T lymfocyt Interakce TH1 – makrofág Interakce TH2 – B lymfocyt Vzájemná regulace aktivit TH1 versus TH2 Vývoj subpopulací leukocytů Negativní regulace efektorových lymfocytů: CTLA-4 inhibiční receptor T lymfocytů, váže ligandy CD80 a CD86 Inhibiční receptory NK buněk Sebedestrukční interakce apoptotického receptoru Fas s ligandem FasL na povrchu aktivovaných T lymfocytů

Suprese zprostředkovaná T lymfocyty Vzájemná negativní interakce TH1 a TH2 zprostředkovaná cytokiny (TH2 lymfocyty produkují IL-4 a IL-10, které potlačují imunitní reakce založené na TH1 buňkách) Klonální eliminace či anergizace T lymfocytů po rozpoznání antigenu na povrchu jiných buněk, než APC (chybí kostimulační signály Regulační T lymfocyty pomáhají udržet toleranci k autoantigenům

Faktory ovlivňující výsledek imunitní odpovědi Tentýž antigen může navodit aktivní imunitní odpověď nebo stav aktivní tolerance, výsledek odpovědi závisí na mnoha faktorech: Stavu imunitního systému Vlastnostech antigenu Dávce antigenu Způsobu podání

Cytokiny ( tkáňové hormony )

Cytokiny Regulační proteiny a glykoproteiny produkované leukocyty i jinými buňkami Základní regulátory imunitního systému Uplatňují se i mimo imunitní systém (angiogeneze, regenerace tkání, kancerogeneze, ovlivnění řady mozkových funkcí,embryonální vývoj…) Cytokiny - sekretované - membránové (zajištěno lokální působení; CD 80, CD86, CD40L, FasL..)

Pleiotropní účinek Působí v kaskádě Cytokinová síť Cytokinový systém je redundantní Působení cytokinů- autokrinní - parakrinní - endokrinní Jsou označovány jako interleukiny (vyjímka: TNF, lymfotoxin, TGF, interferony, CSF a růstové faktory)

B lymfocyt komunikuje s makrofágem a T lymfocytem pomocí cytokinů

Přehled cytokinů interleukiny ( IL-1 až IL-37 ) chemokiny ( IL-8 a příbuzné molekuly ) interferony ( IFN-, -, - ) transformující růstové faktory ( TGF,TGF ) faktory stimulující kolonie ( G-CSF, M-CSF, GM-CSF ) faktory nekrotizující nádory ( TNF-, lymfotoxin ) jiné růstové faktory (SCF, EPO, FGF, NGF,LIF )

Rozdělení cytokinů podle funkce Prozánětlivé cytokiny (IL-1 a , IL-6, 8, 12, 18, TNF) Protizánětlivé cytokiny (IL-1Ra, IL-4, IL-10, TGF ) Cytokiny s aktivitou růstových faktorů hemopoetických bb. ( IL-2, 3, 4, 5, 6, CSF, SCF, LIF, EPO ) Cytokiny uplatňující se v humorální imunitě TH2 ( IL-4, 5, 9, 13 ) Cytokiny uplatňující se v buněčně zprostředkované imunitě TH1 ( IL- 2, IL-12, IFN, GM-CSF, lymfotoxin ) Cytokiny s antivirovým účinkem ( IFN-, IFN-, IFN- )

Receptory cytokinů Jsou složeny ze 2 či 3 podjednotek Jedna váže cytokin, další asociovány s cytoplazmatickými signalizačními molekulami (protein-kinázami) Signalizační podjednotka bývá sdílena několika různými cytokinovými receptory – tzv. receptorové rodiny Signalizace přes tyto receptory může vést k proliferaci, diferenciaci, aktivaci efektorových mechanismů či zablokování buněčného cyklu a indukce apoptózy

HLA systém (MHC glykoproteiny)

MHC glykoproteiny I. třídy (major histocompatibility complex) Funkcí MHC gp I je prezentace peptidových fragmentů, které jsou produkovány buňkou (včetně virových, pokud jsou přítomny), na buněčném povrchu tak, aby byly rozpoznávány T lymfocyty (cytotoxickými CD8) Přítomny na všech jaderných buňkách organismu 3 izotypy klasických lidských MHC gp. ( HLA - A, -B, -C ) 3 izotypy neklasických MHC gp. ( HLA – E, -F, -G; molekuly CD1)

Prezentace peptidového fragmentu pomocí MHC gp I Prezentace peptidového fragmentu pomocí MHC gp I. třídy cytotoxickému T lymfocytu

Struktura MHC gp I MHC gp. I. třídy se skládají z transmembránového řetězce a a nekovalentně asociovaného b2mikroglobulinu Řetězec a má 3 domény, 2 N-terminální (a1, a2 – vazebné místo pro peptidy) a 1 C-terminální doménu (a3 – zakotvena v cytoplazmatické membráně) Vazba peptidu je nezbytná pro stabilní konformaci MHC gp a tím zajišťuje jeho dlouhodobou prezentaci na buněčném povrchu

Vazba peptidů na MHC gp I MHC gp I váží peptidy o délce 8 až 10 AK Určitá molekula MHC gp váže peptidy sdílející společné strukturní rysy - vazebný motiv (rozhodující jsou AK poblíž konců peptidu) K vazbě endogenních peptidů dochází v endoplazmatickém retikulu během biosyntézy MHC gp.

Vazba peptidů na MHC gp I Po vytvoření řetězce a a b2mikroglobulinu dochází v ER k poskládání do správné konformace a k vzájemné asociaci a k asociaci vhodného peptidu, tento komplex je dále zpracován v Golgiho aparátu a pak je prezentován na buněčném povrchu Navázané peptidy pocházejí z proteinů degradovaných proteazómem, který štěpí cytoplasmatické proteiny určené k likvidaci (označené ubiquitinem), peptidové fragmenty jsou transportovány do ER pomocí specifických membránových pump

Vazba peptidů na MHC gp I

Vazba peptidů na MHC gp I

Neklasické MHC gp. I HLA – E, -F, -G; molekuly CD1 Strukturně podobné klasickým MHC gp Jsou méně polymorfní Vyskytují se jen na některých buňkách Specializují se na vazbu zvláštních ligandů

HLA-E a HLA-G - vyskytují se na buňkách trofoblastu Komplexy HLA-E a HLA-G s peptidy jsou rozpoznávány inhibičními receptory NK buněk a přispívají k toleranci plodu v děloze

MHC glykoproteiny II. třídy Funkcí MHC gp II je prezentace peptidových fragmentů z proteinů pohlcených buňkou tak, aby byly rozpoznatelné T lymfocyty (pomocnými CD4) Vyskytují se na APC ( dendritické buňky, monocyty, makrofágy, B lymfocyty) 3 izotypy MHC gp II ( DR, DQ, DP )

Struktura MHC gp II MHC gp. II se skládají ze 2 nekovalentně asociovaných transmembránových podjednotek a a b Vazebné místo pro peptid je tvořeno N-terminálními doménami a1 a b1 Vazba peptidu je nezbytná pro stabilní konformaci MHC gp a tím zajišťuje jeho dlouhodobou prezentaci na buněčném povrchu

Vazba peptidů na MHC gp II MHC gp II váží peptidy o délce 15 až 35 AK (ale i delší - vazebné místo pro peptid je na obou koncích otevřené) Určitá molekula MHC gp váže peptidy sdílející společné strukturní rysy - vazebný motiv K vazbě exogenního peptidu dochází po fúzi post-Golgiho váčku s endozómem

Vazba peptidů na MHC gp II Po vytvoření řetězce a a b v ER dochází k poskládání do správné konformace a k vzájemné asociaci a k připojení dalšího transmembránového řetězce, tzv. invariantního řetězce, který blokuje vazebné místo pro peptid, tento komplex je dále zpracován v Golgiho aparátu; sekreční váčky oddělené od GA fúzují s endozómy, poté se rozštěpí invariantní řetězce a do vazebného místa MHC gp se naváží peptidové fragmenty endocytovaných proteinů a poté je komplex prezentován na buněčném povrchu

Vazba peptidů na MHC gp II

Antigenní prezentace

Antigenní prezentace

Prezentace antigenu T lymfocytům Signál TCR – MHC gp I(II)+Ag peptid (APC) Signál kostimulační CD 28 (Tlymfocyt) – CD 80, CD 86 (APC)

Genetický základ HLA systému HLA komplex se nachází na chromozómu 6 kodominantní dědičnost alelických forem (jedinec má na povrchu buněk 3 izotypy HLA molekul (HLA-A, -B, -C) většinou ve 2 různých alelických formách)

Polymorfismus MHC glykoproteinů U MHC gp je vysoký polymorfismus, tzn. existují až stovky různých alelických forem jednotlivých izotypů (kromě neklasických MHC gp. I a kromě DR řetězce a) Polymorfismus má ochranný význam na úrovni jedince i na úrovni populace Polymorfismus MHC gp způsobuje komplikace při transplantacích

HLA typizace = určení HLA antigenů na povrchu lymfocytů Provádí se při předtransplantačním vyšetření a při určení paternity 1) Sérologická typizace mikrolymfocytotoxický test allospecifická séra ( získaná od vícenásobných rodiček do 6 týdnů po porodu, získaná vakcinací dobrovolníků, nebo komerčně připravené sety typizačních sér (monoklonální protilátky)) princip - inkubace lymfocytů s typizačními séry za přítomnosti králičího komplementu, poté je přidáno vitální barvivo, které obarví mrtvé buňky - buňky nesoucí určité HLA jsou usmrceny cytotoxickými Ab proti tomuto Ag, procento mrtvých buněk je mírou toxicity séra (síly a titru antileukocytárních protilátek) za pozitivní reakci se považuje více než 10% mrtvých bb. (sérologickou typizaci lze provádět i pomocí průtokové cytometrie)

2) Molekulárně genetické metody Pro typizaci se používají hypervariabilní úseky ve II. exonu genů kódujících HLA II. třídy, pro určení HLA I. třídy se používá polymorfismus v II. a III. exonu kódujících genů 2a) PCR-SSP = polymerázová řetězová reakce se sekvenčními specifickými primery extrahovaná DNA slouží jako substrát v sadě PCR reakcí každá PCR reakce obsahuje primerový pár specifický pro určitou alelu (resp. skupinu alel) pozitivní a negativní reakce se hodnotí elektroforézou každá kombinace alel má svůj specifický elektroforetický obraz

2b) PCR-SSO = PCR reakce se sekvenčně specifickými oligonukleotidy namnoží se hypervariabilní úseky genů kódujících HLA hybridizace s enzymaticky nebo radioaktivně značenými DNA sondami specifickými pro jednotlivé alely 2c) PCR- SBT = sequencing based typing; sekvenování nejpřesnější metodika HLA typizace získáme přesnou sekvenci nukleotidů, kterou porovnáme s databází známých sekvencí HLA alel

Děkuji za pozornost