Lomené algebraické výrazy

Slides:



Advertisements
Podobné prezentace
Pár užitečných rad, jak postupovat při řešení složitějších rovnic
Advertisements

Algebraické výrazy: lomené výrazy
Poměr v základním tvaru.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Zlomky Násobení zlomků..
Lomené algebraické výrazy
Zlomky Sčítání zlomků..
Lomené algebraické výrazy
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Algebraické výrazy: počítání s mnohočleny
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Lomené algebraické výrazy
Lomené algebraické výrazy
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu www. rvp
Lomené výrazy – tvar zlomku, ve jmenovateli je proměnná
Algebraické výrazy: lomené výrazy
Řešení lineárních rovnic s neznámou ve jmenovateli
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Lomené algebraické výrazy
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Zlomky a desetinná čísla.
Krácení a rozšiřování postupného poměru.
Úpravy algebraických výrazů
Rovnost, rozšiřování a krácení.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
VY_32_INOVACE_07/1/18_Číslo a proměnná
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Řešení lineárních rovnic s neznámou ve jmenovateli
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Řešení lineárních rovnic s neznámou ve jmenovateli
ZLOMKY 7. ROČNÍK ZÁKLADNÍ ŠKOLY
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Kvadratická rovnice Kvadratickou rovnicí s jednou neznámou x je každá rovnice tvaru: ax2 + bx + c = 0 kvadratický člen absolutní člen lineární člen Dostupné.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Řešení lineárních rovnic s neznámou ve jmenovateli
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
VY_32_INOVACE_07/1/17_Číslo a proměnná
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Krácení lomených výrazů.
PROVĚRKY Převody jednotek času.
Dělení lomených výrazů
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
3.4 LOMENÉ VÝRAZY Mgr. Petra Toboříková. Lomené výrazy = výrazy ve tvaru zlomku pracujeme s nimi jako se zlomky musíme stanovit podmínky ve jmenovateli.
LOMENÉ VÝRAZY III. Sčítání a odčítání výrazů Matematika 9. ročník Creation IP&RK.
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Lomené algebraické výrazy
Lomené algebraické výrazy
Řešení lineárních rovnic
Dostupné z Metodického portálu www. rvp
Lomené algebraické výrazy
Lomené algebraické výrazy
Hodnota proměnné Příprava na lomené výrazy
Vy_32_Inovace_04_Rozšiřování lomených výrazů
Provozováno Výzkumným ústavem pedagogickým v Praze.
Lomené algebraické výrazy
Hodnota proměnné Příprava na lomené výrazy
Lomené algebraické výrazy
Lomené algebraické výrazy
Lomené algebraické výrazy
Rozklad čísel od 1 do 10 Dostupné z Metodického portálu ISSN:  , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným.
Lomené algebraické výrazy
Algebraické výrazy: lomené výrazy
Transkript prezentace:

Lomené algebraické výrazy Rozšiřování lomených výrazů

Rozšiřování lomených výrazů. S pojmem rozšiřování jsme se seznámili již při početních operacích se zlomky. Rozšíření znamená násobení čitatele i jmenovatele stejným číslem, různým od nuly. Podobně postupujeme i u lomených výrazů. Rozšířit lomený výraz znamená vynásobit čitatele i jmenovatele stejným výrazem, různým od nuly.

Rozšiřování lomených výrazů. Tak tedy ještě jednou. Rozšíříme lomený výraz výrazem U lomených výrazů nesmíte nikdy zapomenout na určení podmínek řešitelnosti (tedy kdy má výraz smysl)!

Rozšiřování lomených výrazů. Rozšiřování lomených výrazů budeme potřebovat především při převádění výrazů na společného jmenovatele. Vyzkoušejme si tedy příklad rozšíření lomeného výrazu na požadovaného jmenovatele. Příklad: Rozšiřte lomený výraz tak, aby jeho jmenovatel byl 6x2. Daný výraz tedy rozšíříme výrazem 2x. Zapomenout nesmíme na podmínky, pro které proměnné nemá výraz smysl.

Rozšiřování lomených výrazů. Z řešení předcházejícího příkladu je zřejmé, že známe-li jmenovatele, na kterého musíme lomený výraz převést, musíme zjistit, čím budeme lomený výraz rozšiřovat. K tomu nám pomůže rozložení jmenovatele lomeného výrazu na součin v základním tvaru. Příklad: Rozšiřte lomený výraz tak, aby jeho jmenovatel byl 7xy+21y. Výraz rozšíříme výrazem 7y. Jak je vidět, tak ze součinového tvaru snadno určíme, čím budeme lomený výraz rozšiřovat, stejně jako podmínky, pro které má výraz smysl.

Rozšiřování lomených výrazů. Jak již bylo řečeno, rozšiřování lomených výrazů budeme potřebovat především při převádění výrazů na společného jmenovatele. Společného jmenovatele výrazů musíme nejdříve zjistit. K tomu opět napomůže rozložení jmenovatelů na součin v základním tvaru. Příklad: Rozšiřte lomené výrazy tak, aby měly stejného jmenovatele a aby to byl co nejjednodušší výraz. společný jmenovatel by tedy mohl být x.(x+3).(x+3).(x-3) To by ale nebyl jmenovatel v co nejjednodušším tvaru. Proto člen, který se vyskytuje v obou jmenovatelích, vezmeme vždy do společného jmenovatele jen jednou.

Rozšiřování lomených výrazů. Příklad: Rozšiřte lomené výrazy tak, aby měly stejného jmenovatele a aby to byl co nejjednodušší výraz. Nejjednodušší společný jmenovatel tedy je x.(x+3).(x-3). Ve jmenovateli „přibyl“ člen (x-3), tudíž aby došlo k rozšíření lomeného výrazu, musí tentýž člen „přibýt“ i v čitateli. Ve jmenovateli „přibyl“ člen x, tudíž aby došlo k rozšíření lomeného výrazu, musí tentýž člen „přibýt“ i v čitateli. Obě rovnosti platí, jestliže

Rozšiřování lomených výrazů – příklady k procvičení. Rozšiřte lomené výrazy a určete podmínky, kdy má smysl. Klikněte, pokud nebudete vědět, jak dál.

Rozšiřování lomených výrazů – příklady k procvičení. Rozšiřte lomené výrazy a určete podmínky, kdy má smysl. Klikněte, pokud nebudete vědět, jak dál.

Rozšiřování lomených výrazů – příklady k procvičení. Rozšiřte lomené výrazy a určete podmínky, kdy má smysl. Klikněte, pokud nebudete vědět, jak dál.

Rozšiřování lomených výrazů – příklady k procvičení. Doplňte, aby platila rovnost a určete podmínky, kdy má smysl. Klikněte, pokud nebudete vědět, jak dál.

Rozšiřování lomených výrazů – příklady k procvičení. Doplňte, aby platila rovnost a určete podmínky, kdy má smysl. Klikněte, pokud nebudete vědět, jak dál.

Rozšiřování lomených výrazů – příklady k procvičení. Najděte společného jmenovatele a rozšiřte. Určete podmínky, kdy má smysl. Klikněte, pokud nebudete vědět, jak dál.

Rozšiřování lomených výrazů – příklady k procvičení. Najděte společného jmenovatele a rozšiřte. Určete podmínky, kdy má smysl. Klikněte, pokud nebudete vědět, jak dál.

Rozšiřování lomených výrazů – příklady k procvičení. Najděte společného jmenovatele a rozšiřte. Určete podmínky, kdy má smysl. Klikněte, pokud nebudete vědět, jak dál.

Závěr Rozšiřování, stejně tak jako krácení lomených výrazů využijeme především při jejich zjednodušování, sčítání, odčítání, násobení a dělení. Proto je důkladně procvičujte. Připomínám ještě jednu velmi důležitou věc. Uvádění podmínek, pro které mají lomené výrazy smysl, jsou nezbytnou a nutnou součástí řešení, i když to v zadání příkladu nemusí být výslovně uvedeno!