Slovní úlohy řešené soustavou rovnic

Slides:



Advertisements
Podobné prezentace
Gymnázium, Broumov, Hradební 218
Advertisements

Výuka anglického, německého jazyka a matematiky na středních školách ve třídách s integrovanými žáky se specifickými poruchami učení pomocí informačních.
Slovní úlohy o pohybu.
Tabulka funkce: V balíku je šest lahví kofoly. Jedna stojí 25 Kč. Sestav tabulku závislosti celkové ceny na počtu zakoupených lahví z jednoho balíku kofoly.
Slovní úlohy řešené rovnicí II.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
Tvorba výrazů s proměnnou
Přijímací zkoušky na SŠ MATEMATIKA Připravil PhDr. Ivo Horáček, PhD.
2 MECHANIKA 2.1 Kinematika popisuje pohyb.
VI. Řešení úloh v testech Scio z matematiky
Rychlost, dráha, čas, zrychlení – řešené příklady
Výukový materiál zpracován v rámci projektu EU peníze školám
Slovní úlohy o pohybu Varianta 2: Pohyby stejným směrem.
Trojčlenka Ing. Kamila Kočová
Slovní úlohy – směsi 4..
Slovní úlohy o směsích (řešené lineární rovnicí o jedné neznámé)
Slovní úlohy o pohybu Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN:
Slovní úlohy řešené soustavou rovnic
Matematika – 9.ročník Slovní úlohy o pohybu - 1
Slovní úlohy O pohybu 2.
Slovní úlohy O pohybu 2 Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN:
řešené soustavou rovnic
Slovní úlohy o pohybu Varianta 1: Pohyby proti sobě (1. část)
Násobíme . 4 = = . 4 = = . 4 = = . 2 = 9 .
Procenta Výpočet počtu procent
Kdo chce být milionářem ?
Obchodní akademie a Střední odborná škola, gen. F. Fajtla, Louny, p.o.
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Zlomky Vzorce Procenta Úměrnost
Gymnázium Jiřího Ortena KUTNÁ HORA
ČLOVĚK A JEHO SVĚT 2. Ročník - hodiny, minuty Jana Štadlerová ŽŠ Věšín.
ZÁKLADNÍ ŠKOLA PODBOŘANY, HUSOVA 276, OKRES LOUNY
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G
Zábavná matematika.
V. Řešení úloh v testech Scio z matematiky
IDENTIFIKÁTOR MATERIÁLU: EU
Vzdělávací materiál v rámci projektu EU peníze školám
Základní škola, Ostrava – Poruba, Porubská 831, příspěvková organizace Registrační číslo projektu – CZ.1.07/1.4 00/ Název projektu – BRÁNA JAZYKŮ.
III. Řešení úloh v testech Scio z matematiky
VY_42_INOVACE_379_ROVNICE Jméno autora VMMgr. Václav Hendrych Datum vytvoření VM prosinec 2011 Ročník použití VM 9. ročník Vzdělávací oblast/obormatematika.
PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST
Slovní úlohy o pohybu Varianta 1: Pohyby proti sobě (2. část)
Násobení a dělení čísel (10,100, 1000)
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání.
ZÁKLADNÍ ŠKOLA OLOMOUC příspěvková organizace MOZARTOVA 48, OLOMOUC tel.: , ; fax:
Matematika – 9.ročník Slovní úlohy o pohybu - 2
Lineární rovnice – 1. část
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
Slovní úlohy o pohybu 1 typ úloh – stejný směr
Řešení úloh v testech Scio z matematiky zadaných ve školním roce 2011/2012 pro 6. ročník (7. – 12. úloha) VII. označení digitálního učebního materiálu:
Přednost početních operací
POMĚR Prezentace je zaměřená na výklad a procvičení slovních úloh na poměr. Autor: Mgr. Věra Benáková, 2. ZŠ Dobříš 7 : 4 1 : : :
Slovní úlohy řešené soustavou rovnic
* Procenta kolem nás Matematika – 7. ročník *
AnotacePrezentace, která se zabývá soustavou lineárních rovnic se dvěma neznámými.. AutorMgr. Václav Simandl JazykČeština Očekávaný výstupŽáci zapisují.
Slovní úlohy řešené soustavou rovnic
Nové modulové výukové a inovativní programy - zvýšení kvality ve vzdělávání Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem.
Slovní úlohy – procvičování 1. 6) Z odlitku byly zhotoveny tři součástky. Na první byla spotřebována polovina odlitku, na druhou dvě třetiny zbytku a.
Číslo projektuCZ.1.07/ / Název školySOU a ZŠ Planá, Kostelní 129, Planá Vzdělávací oblastMatematické vzdělávání PředmětMatematika Tematický.
Slovní úlohy řešené soustavou rovnic
SLOVNÍ ÚLOHY O POHYBU Název školy: Základní škola Karla Klíče Hostinné
Slovní úlohy řešené soustavou rovnic
Název školy:  ZÁKLADNÍ ŠKOLA PODBOŘANY, HUSOVA 276, OKRES LOUNY Autor:
Slovní úlohy řešené soustavou rovnic
Slovní úlohy řešené soustavou rovnic
Slovní úlohy O pohybu 2 Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Syblík. Dostupné z Metodického portálu ISSN:
Slovní úlohy na soustavy rovnic
Slovní úlohy o pohybu.
VY_32_INOVACE_10 10 KP slovní úlohy autor: Miroslav Ševčík
Slovní úlohy o pohybu.
Transkript prezentace:

Slovní úlohy řešené soustavou rovnic 9. ročník

Slovní úlohy řešené soustavou rovnic a) Slovní úlohy o směsích b) Slovní úlohy o pohybu c) Slovní úlohy o společné práci d) Logické slovní úlohy

Slovní úlohy řešené soustavou rovnic Obecný postup řešení slovní úlohy: 1. Určení neznámých 2. Stanovení dvou vztahů rovnosti 3. Sestavení dvou rovnic 4. Vyřešení soustavy 5. Zkouška dle slovní úlohy 6. Slovní odpověď

Slovní úlohy řešené soustavou rovnic 1. Do obchodu dovezli 100 balíčků cibulek tulipánů dvojího druhu. První druh po 25 Kč za balení, druhý druh po 40 Kč za balení. Celkem prodejem utržili 3 400 Kč. Kolik balení bylo prvního a kolik druhého druhu? druh tulipánů …………. x balíčků druh tulipánů …………. y balíčků 1. Určení neznámých: 2. Stanovení dvou vztahů rovnosti: a) Celkový počet balíčků je 100 b) Cena prvního druhu …… x · 25 Kč Cena druhého druhu ….. y · 40 Kč Celková cena ………….. 3 400 Kč x + y = 100 25x + 40y = 3400 3. Sestavení dvou rovnic: 4. Vyřešení soustavy: [x; y] = [40; 60] Počet: 1. druh …….. 40 2. druh …….. 60 5. Zkouška dle slovní úlohy: Celkem ………. 100 Cena: 1. druh …….. 25 · 40 = 1000 2. druh …….. 40 · 60 = 2400 Celkem … 3400 6. Slovní odpověď: Do obchodu přivezli 40 balení prvního a 60 balení druhého druhu.

Slovní úlohy řešené soustavou rovnic 2. Z Berouna do Hostomic je 20 km. Kdyby z obou míst vyjeli současně v 8:00 hodin cyklista a motocyklista, potkají se v 8:15 hodin. Kdyby vyjeli ve stejnou dobu z Hostomic současně, budou v 8:05 hodin od sebe vzdáleni 2 km. Jakou rychlostí jezdí motocyklista a jakou cyklista? cyklista …….…………. x motocyklista………….. y 1. Určení neznámých: 2. Stanovení dvou vztahů rovnosti: Součet ujetých drah při jízdě proti sobě musí být za 15´ … 20 km. cyklista za 15´ ujede · x km --- motocyklista za 15´ ujede · y km b) Rozdíl ujetých drah při jízdě za sebou musí být za 5´ … 2 km cyklista za 5´ ujede · x km --- motocyklista za 5´ ujede · y km x + y = 20 y - x = 2 __________________________________ 3. Sestavení dvou rovnic: 4. Vyřešení soustavy: [x; y] = [28; 52] 5. Zkouška dle slovní úlohy: Proti sobě cyklista ………. · 28 km = 7 km motocyklista … · 52 km = 13 km Součet .…. 20 km Za sebou cyklista ……… · 28 km = km motocyklista … · 52 km = km Rozdíl … 2 km 6. Slovní odpověď: Cyklista jel rychlostí 28 , motocyklista 52 .

Slovní úlohy řešené soustavou rovnic 3. Nádrž o objemu 0,99 m3 je napouštěna dvěma přívody. Po 6 hodinách napouštění oběma přívody se jeden zastavil. Zbývající přívod s hodinovým přítokem o 10 vyšším zbytek nádrže napustí za dvě hodiny. Určete kolik litrů vody přitéká oběma přívody. přívod …….…………. x 2. přívod ……………….. y 1. Určení neznámých: 2. Stanovení dvou vztahů rovnosti: Druhým přívodem přiteče o 10 více než prvním b) Prvním přívodem přiteče …………. 6x litrů Druhým přívodem přiteče ………… (6+2)y litrů = 8y litrů Celkem ……………………………… 0,99 m3 = 990 litrů x + 10 = y 6x + 8y = 990 3. Sestavení dvou rovnic: 4. Vyřešení soustavy: [x; y] = [65; 75] 5. Zkouška dle slovní úlohy: První přítok …….. 65 Druhý přítok ……. 75 Rozdíl .…. 10 První přítok … 6 · 65 litrů = 390 litrů Druhý přítok … 8 · 75 litrů = 600 litrů Součet … 990 litrů 6. Slovní odpověď: Prvním přítokem přitéká 65 , druhým 75 .

Slovní úlohy řešené soustavou rovnic 4. Ze 2 vzorků jogurtů lze získat 45 g mléčného tuku. Každý vzorek má hmotnost kg. V nízkotučném je 8 krát méně mléčného tuku než ve smetanovém. Kolik procent mléčného tuku je v jednotlivých jogurtech? Obsah tuku v 1. jogurtu …….…………. x % Obsah tuku v 1. jogurtu ……..………… y % 1. Určení neznámých: 2. Stanovení dvou vztahů rovnosti: Druhý jogurt je 8 krát tučnější než první b) První jogurt obsahuje …………. · 250 g tuku Druhý jogurt obsahuje ………… · 250 g tuku Celkem ……………………………… 45 g tuku 8x = y · 250 + · 250 = 45 ____________________________________________________ 3. Sestavení dvou rovnic: 4. Vyřešení soustavy: [x; y] = [2; 16] 5. Zkouška dle slovní úlohy: Nízkotučný jogurt ……… 2% Smetanový jogurt ……… 16% Podíl .…. 8 × Nízkotučný jogurt … 2% => 0,02 · 250g = 5 g Smetanový jogurt …16% => 0,16 · 250g = 40 g Celkem ……………………………………. = 45 g 6. Slovní odpověď: Nízkotučný jogurt obsahuje 2% a smetanový 16% mléčného tuku.

Slovní úlohy řešené soustavou rovnic 5. Klára koupila v obchodě 3 kg banánů a 4 kg pomerančů za 175 Kč, Pavel v témže obchodě utratil 161 Kč za kilogram banánů a 5 kg pomerančů. Kolik stál kilogram banánů a kolik kilogram pomerančů? [x; y] = [21; 28]

Slovní úlohy řešené soustavou rovnic 6. Podél silnice bylo vysazeno 250 stromků dvojího druhu. Sazenice třešní po 60 Kč za kus a sazenice jabloní po 50 Kč za kus. Celá výsadba stála 12 800 Kč. Kolik bylo sazenic třešní a kolik jabloní? [x; y] = [30; 220]

Slovní úlohy řešené soustavou rovnic 7. Do třídy chodí 28 žáků. Dívek je o 4 více než chlapců. Kolik dívek a kolik chlapců chodí do třídy? [x; y] = [16; 12]

Slovní úlohy řešené soustavou rovnic 8. Podíl dvou čísel je 4, jejich součet je 90. Která jsou to čísla? [x; y] = [72; 18]

Slovní úlohy řešené soustavou rovnic 9. Otec je čtyřikrát tak starý jako jeho syn. Za šest let bude starší již jen třikrát. Kolik let je otci a kolik synovi? [x; y] = [48; 12]

Slovní úlohy řešené soustavou rovnic 10. Zvětšíme-li délku obdélníka o 2 m a zároveň zmenšíme šířku o 1 m, zůstane jeho obsah nezměněn. Jestliže však délku o 1 m zmenšíme a zároveň šířku o 2 m zvětšíme, zvětší se obsah o 9 m2. Jaké jsou rozměry obdélníku? [x; y] = [8; 5]

Slovní úlohy řešené soustavou rovnic 11. Dá-li Jana Petrovi tři bonbóny, bude mít stále ještě o jeden bonbón více. Dá-li Petr Janě jeden bonbón, bude jich mít Jana dvakrát více než Petr. Kolik bonbónů má každý z nich? [x; y] = [17; 10]

Slovní úlohy řešené soustavou rovnic 12. Trojnásobek rozdílu dvou neznámých čísel je 24. Čtvrtina jejich součtu je 9. Urči tato čísla. [x; y] = [22; 14]

Slovní úlohy řešené soustavou rovnic 13. Po okruhu dlouhém 2 500 m jezdí dva motocykly. Jezdí-li proti sobě, potkávají se každou minutu. Jezdí-li týmž směrem, dožene rychlejší pomalejšího každých pět minut. Urči jejich rychlosti. [x; y] = [90; 60]

Slovní úlohy řešené soustavou rovnic 14. Studenti si objednali 32 maturitních triček dvojí velikosti. Menší za 200 Kč a větší za 250 Kč za kus. Celkem utratili 7100 Kč. Kolik bylo kterých triček? [x; y] = [14; 18]

Slovní úlohy řešené soustavou rovnic 15. Řemeslník má za úkol položit 60 m2 dlažby z dlaždic dvojího druhu. Levnější po 360 Kč za m2, dražší po 420 Kč za m2. Dlažba stála celkem 22500 Kč. Kolik m2 bylo vydlážděno levnějšími a kolik dražšími dlaždicemi? [x; y] = [45; 15]