Kvantitativní analýza

Slides:



Advertisements
Podobné prezentace
Umožňuje rozlišení až proteinů.
Advertisements

Elektroosmotický tok EOF
Elektromigrační metody
Aminokyseliny.
KINETICKÁ TEORIE STAVBY LÁTEK.
IZOLACE A CHARAKTERIZACE PROTEINŮ
Chemické reakce III. díl
Pevné látky a kapaliny.
Co je elektrický proud? (Učebnice strana 122 – 124)
Vybrané metody analytické chemie
VODA A VODNÍ REŽIM V ZEMINÁCH PODLOŽÍ
III. Stacionární elektrické pole, vedení el. proudu v látkách
Vedení elektrického proudu v kapalinách
Kvantitativní analýza
ELEKTRONOVÁ PARAMAGNETICKÁ (SPINOVÁ) REZONANCE
Kapalinová chromatografie v analytické toxikologii Věra Pacáková Univerzita Karlova v Praze, Přírodovědecká fakulta, katedra analytické chemie.
Tato prezentace byla vytvořena
Kapilární elektroforéza v nevodném prostředí - NACE
Povrchové napětí kapalin
Název materiálu: ELEKTRICKÉ POLE – výklad učiva.
Elektrochemické metody - elektrolýza SŠZePř Rožnov p. R PaedDr
Jak se kapalina stává elektricky vodivou
II. Statické elektrické pole v dielektriku
Elektrochemie.
Kapaliny.
VODIČ A IZOLANT V ELEKTRICKÉM POLI.
CHEMICKÁ VAZBA.
SKUPENSKÉ STAVY HMOTY Teze přednášky.
Chemické rovnováhy ve vodách
Separační metody.
Metody oddělování složek směsí
Stacionární a nestacionární difuse.
Separační metody.
Chromatografie.
Využití multimediálních nástrojů pro rozvoj klíčových kompetencí žáků ZŠ Brodek u Konice reg. č.: CZ.1.07/1.1.04/ Předmět : Fyzika Ročník : 8. Téma.
Biochemické metody separace proteinů
Roztoky roztoky jsou homogenní, nejméně dvousložkové soustavy
Chirální separace s využítím makrocyklických antibiotik v CE
ELEKTROLYTICKÝ VODIČ.
Chromatografie Chromatografické dělení je založeno na distribuci separované látky mezi mobilní a stacionární fázi Richard Vytášek 2009.
Mgr. Andrea Cahelová Elektrické jevy
Potenciometrie, konduktometrie, elektrogravimetrie, coulometrie
Mezimolekulové síly.
Kvalitativní a kvantitativní analýza – chromatografie
Výukový materiál zpracován v rámci projektu EU peníze školám
Roztoky roztoky jsou homogenní, nejméně dvousložkové soustavy jsou tvořeny částicemi (molekulami, ionty) prostoupenými na molekulární úrovni částice jsou.
Studium aktinu, mikrofilamentární složky cytoskeletu pomocí dvou metod:
chromatografické metody adsorpce - fyzikální, chemická
Marie Černá, Markéta Čimburová, Marianna Romžová
Název školyIntegrovaná střední škola technická, Vysoké Mýto, Mládežnická 380 Číslo a název projektuCZ.1.07/1.5.00/ Inovace vzdělávacích metod EU.
IDENTIFIKÁTOR MATERIÁLU: EU
ELEKTRICKÝ PROUD V KAPALINÁCH I.
Chromatografické metody
Metody imunodifuze a precipitace v gelech
Mária Ol’hová, Veronika Frkalová, Petra Feberová
ELEKTROFORETICKÉ METODY
Vedení elektrického proudu v látkách. Struktura prezentace úvod otázky na úvod výklad příklad/praktická aplikace otázky k zopakování shrnutí.
Anotace: Prezentace slouží k přehledu tématu vlastnosti vod Je určena pro výuku ekologie a monitorování životního prostředí v 1. a 2. ročníku střední.
EU peníze středním školám Název vzdělávacího materiálu: Roztoky Číslo vzdělávacího materiálu: ICT9/10 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím.
Elektrické vlastnosti fázových rozhraní
Iontová chromatografie
ELEKTROTECHNICKÉ MATERIÁLY
Typy molekul, látek a jejich vazeb v organismech
Digitální učební materiál
Roztoky - elektrolyty.
Kapalinová chromatografie - LC
ELEKTROLYTICKÝ VODIČ.
Vážková analýza - gravimetrie
Elektrické vlastnosti fázových rozhraní
VODIČ A IZOLANT V ELEKTRICKÉM POLI.
Transkript prezentace:

Kvantitativní analýza Metoda kalibrační křivky Metoda interního standardu Metoda kalibrační křivky – vyžaduje konstantní nástřik vzorku i standardů. Změří se závislost plochy na koncentraci standardu v koncentračním rozmezí, které je očekáváno ve vzorku. Sestrojí se kalibrační graf a z něho po změření plochy stanovovaného analytu odečteme koncentraci. Metoda interního standardu – používá se interní standard (IS) IS = látka, která se určitě ve stanovaném vzorku nevyskytuje a zároveň migruje blízko zóny analytu. IS se přídá jak do kalibračních roztoků tak do vzorku tak, aby jeho koncentrace byla všude stejná. Do kalibrační závislosti se pak vznáší poměr plochy analytu a IS. Metoda IS je přesnější, protože eliminuje chyby při nástřiku

Pro kvantitativní analýzu se nástřik provádí téměř výhradně hydrodynamicky. Elektrokinetický nástřik diskriminuje analyty ve vzorku podle jejich klesající mobility, tj. ionty s vyšší pohyblivostí se nadávkují ve vyšším množství oproti iontům méně pohyblivějším. Charakteristiky účinnosti Vycházejí z kolonové chromatografie a z teorie tzv. teoretického patra. Ideální = Gaussovský pík Reálný pík se gaussovskému pouze blíží!

Šířka píku při základně Účinnost vyjádřená jako počet TP Vztah pro výpočet N z elektroforegramu

Pro CE techniky lze předpokládat, že k rozmytí píků (a tím ke ztrátě účinnosti a separace) dochází pouze díky podélné difúzi. Pak platí: D…difúzní koeficient analytu. Toto je ovšem značně idealizovaný popis, který neplatí na reálné systémy = N bude vždy menší než udává tento vztah. Příspěvky všech faktorů ovlivňující rozmytí píků (injekce, teplota, adsorpce, detekce, elektrodisperze)

Micelární elektrokinetická chromatografie – MEKC Elektromigrační technika umožňující separaci neutrálních (hydrofóbních, nepolárních) látek v elektrickém poli. MEKC může být použitá i pro separaci látek nabitých. Separace probíhá v křemenných kapilárách v pracovním elektrolytu (pufru) s přídavkem tenzidu TENZID – látka, která snižuje a ovlivňuje povrchové napětí, mezipovrchové napětí a smáčivost. Molekula tenzidu se vždy skládá z hydrofóbní části (nepolární) a z hydrofilní částí (polární). Hydrofilní část Hydrofóbní část

Tenzidy umožňují rozpouštění (solubilizaci) nepolární, hydrofóbních látek, které jsou bez přádavku tenzidů špatně rozpustné ve vodě (polárním rozpuštědle), nebo jsou úplně ve vodě nerozpustné. Aniontové Kationtové Tenzidy Neiontové Amfoterní

Nejpoužívanější tenzidy v MEKC SDS je nejvyužívanější tenzid pro separace neionogenních látek pomocí MEKC

CMC – kritická micelární koncentrace Koncentrace tenzidu nad, kterou za daných podmínek (T, typ rozpouštědla, iontové síle…) vytvářejí molekuly (monomery) tenzidů v roztoku tzv. nadmolekulární útvary - MICELY Příklad micely aniontového a kationtového tenzidu Hydrofóbní jádro Hydrofilní „obal“ micely Hydrofóbní jádro interaguje s nepolárními (hydrofóbními) látkami, hydrofilní obal interaguje s polárními látkami nebo s ionty opačného znaménka.

Agregační číslo N Počet monomerů tenzidu tvořící za daných podmínek strukturu tenzidy (typicky pro iontové tenzidy jsou to řádově desítky molekul). SEPARACE POMOCÍ MEKC se odehrává v pracovních elektrolytech o neutrálním až alkalickém pH (nejčastěji 7 až 9) za přítomnosti silného (rychlého) elektroosmotického toku, který napomáhá separaci uskutečnit.

Nenabité látky se elektrickém poli bez přítomnosti tenzidů pohybují stejnou rychlostí jako se pohybuje EOF, ale nedochází k jejich separaci. Použijeme-li nepř. aniontový tenzid (SDS) o koncentraci rovnou jeho CMC nebo vyšší v daném pracovním elektrolytu, můžou nenabité látky interagovat s hydrofóbními jádry micely a budou se tedy pohybovat stejnou rychlostí jako je rychlost pohybu micely a vzájemná separace neutrálních látek je řízena rozdílnými hodnotami tzv. rozdělovacích koeficientů popisující míru interakce mezi micelou a neutrální látkou. V případě použití SDS migrují micely proti směru EOF!

Vztah kapacitního faktoru (má stejný význam jako v kapalinové chromatografii) a rozdělovacího koeficientu.

Příklad separace zneužívaných drog pomocí MEKC 8,5 mM borát, 8,5 mM fosfát, 85 mM SDS, 15% acetonitril, pH 8,5

V takto pokrytých kapilárách není EOF !!! Kapilární gelová elektroforéza (CGE) Elektromigrační technika kombinující výhody separací v křemenných kapilárách a separací v gelových médiích v plošném uspořádání. Vhodná pouze pro separace makromolekul (oligomerů a peptidů, fragmentů nukleových kyselin, polysacharidů apod.) Pracuje se v pokrytých kapilárách (kovalentně se na Si-OH skupiny navážou derivatizací např. trimethylsilylskupiny) -Si-O-Si(CH3)3 V takto pokrytých kapilárách není EOF !!!

Používají se buď chemické gely nebo fyzikální gely Kapiláry pro CGE jsou navíc ještě vyplněny gelem a pracovním elektrolytem, tak aby mohlo docházet k průchodu elektrického proudu. Používají se buď chemické gely nebo fyzikální gely

Chování gelů v závislosti na koncentraci v roztoku

K separaci CGE dochází na základě rozdílné rychlosti pohybu molekul v elektrickém poli a na základě různé schopnosti procházet přes póry v gely – tj. separace především založena na rozdílné velikosti (hydrodynamickém poloměru). Používané gelové média: polyakrylamidový gel, agarosový gel, alkylcelulózové gely (hydroxyethylcelulosa, hydroxymethylcelulosa, hydroxymethylpropylcelulosa) Polyethylenglykoly, polyvinylalkoholy

Nástřik se v případě CGE provádí elektrokineticky, jinak by došlo k vytlačení gelu z kapiláry ven! Nejčastější gely pro CGE a jejich aplikace

Pro detekci se nejčastěji používá fluorescenční detekce, případně UV spektrofotometrická detekce. Separace polydeoxythymidylových kyselin v polyakrylamidovém gelu (PAGE)

Kapilární elektrochromatografie (CEC) Kombinace elektromigračních technik s kapalinovou chromatografií. Pro separaci se uplatňují mechanismy migrace nabitých částic v elektrickém poli a interakce se stacionární fází Uspořádání typické pro CEC – pro separaci se používají křemenné kapiláry, které navíc obsahují stacionární fází podobně jako v kapalinové chromatografii.

Profil průtoku MF přes kapiláru v případě LC CEC nepotřebuje vysokotlakou pumpu pro zajištění pohybu mobilní fáze (MF) přes kapiláru, pumpou je v tomto případě generovaný EOF. Profil průtoku MF přes kapiláru v případě LC Profil průtoku MF přes kapiláru v případě CE

K vytvoření EOF přispívá jak náboj vnitřní stěny kapiláry tak náboj na částicích stacionární fáze. Pro CEC se nejčastěji využívají kapiláry o vnitřním průměru 100 mm, které jsou vyplněny částicemi stacionární fáze o průměr 3 až 5 mm. Nejčastější typ SF je C8 a C18 fáze – tzv. reversní fáze.

Stacionární fáze je v kapiláře umístěna mezi dvě polopropustné frity (zadrženy jsou částice SF nikoliv molekuly MF) Detekční okénko následuje ve „volné části kapiláry“ za fritou tak, aby mohlo docházet k on-column detekci.

EOF v kapilárách s C8 a C18 stacionární fázi v kyselé a bazické oblasti

Jako mobilní fáze se vždy používá vodný pufr s přídavky organických rozpouštědel (methanol, acetonitril, dimetylformamid, dimethylsulfoxid).

Separace aromatických uhlovodíků CEC na C18 stacionární fázi.