VYSOKÁ ŠKOLA FINANČNÍ A SPRÁVNÍ, o.p.s. FINANČNÍ MATEMATIKA VYSOKÁ ŠKOLA FINANČNÍ A SPRÁVNÍ, o.p.s.
ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY 1. Typy a druhy úročení, budoucí hodnota investice
Efektivní úroková sazba ( re ) roční úroková sazba, která dává za rok při p.a. stejnou budoucí hodnotu jako roční úroková sazba při častějším připisování úroků. Snaha o dosažení stejného finančního efektu při úročení p.a. ( nominální úr. sazba při ročním úrokovacím období je vyšší než při úrokovacím období kratším než rok) Umožňuje porovnat různé úrokové sazby srovnávané za stejné časové období, avšak s různou četností připisování úroků.
Spojité připisování úroků Př: Najděte r , která odpovídá úrokové sazbě 10% p.a., jsou-li úroky připisovány 12 a) p.s. b) p.q. c) p.m. Spojité připisování úroků re - nazývá se úroková intenzita FV = PV * ( er *n ) re = er- 1 Př: Na kolik vzroste kapitál 10 000 Kč za 5 let při spojitém úročení a sazbě 5,5%?
3.DISKONT A RŮZNÉ DRUHY DISKONTOVÁNÍ (D) Je odměna ode dne výplaty do dne splatnosti pohledávky (předlhůtní úročení) rozdíl mezi FV a PV D = FV*d*n d = diskontní míra (%) Používá se nejčastěji pro eskont směnek, část náhrady předem Krátkodobé cenné papíry s jmenovitou hodnotou jako hodnotou budoucí. státní pokladní poukázky (zisk je rozdíl mezi kupní a nominální hodnotou) krátkodobá splatnost
Diskontování: Výpočet současné hodnoty z hodnoty budoucí Př Osoba A vystavila osobě B směnku na částku 10.000 Kč s dobou splatnosti 1 rok, s diskontní mírou 8% . Kolik osoba A ve skutečnosti obdrží? Př Vypočítejte, kolik dostane vyplaceno klient, jemuž banka eskontuje směnku o nominální hodnotě 10.000 Kč 35 dní před dobou splatnosti při diskontní sazbě 9% p.a.
Vztah mezi polhůtní úrokovou sazbou a diskontní sazbou. současná hodnota budoucí hodnota FV = PV * (1 + i*n)
Složené: v = (1 + r) -1 Jednoduché: v = (1 + r n) -1 Př Porovnejte diskontní sazbu a polhůtní úrokovou sazbu. Eskontována směnka splatná za půl roku o nominální hodnotě 100 000 Kč s roční diskontní sazbou 12%. Jednoduché úročení s roční úrokovou sazbou 12%, přičemž za půl roku se musí splatit 100 000 Kč. Shodné výnosy: Diskontní faktor (v) udává současnou hodnotu jednotkového vkladu, který je splatný za 1 rok při úrokové sazbě r. Složené: v = (1 + r) -1 Jednoduché: v = (1 + r n) -1 Spojité: v = e-r PV = FV * v n
Smíšené úročení: Doba úročení není v celých letech, n0 je počet celých let, l je zbytek doby úročení lomený počtem příslušných jednotek za rok. FV = Pv * ( 1 + r )n0 * ( 1 + l * r ) Př Kolik musíme uložit, abychom za 5 let a 3 měsíce měli obnos 100 000 Kč 17 při úrokové sazbě 9,6% p.a.? Úroky jsou připisovány jednou za rok, ponechávány na účtu a dále úročeny. Př V oznámení o aukci 91 denních SPP s nominální hodnotou 1 mil. Kč je jako max. akceptovatelná (roční) úroková míra uvedeno 5,65%. Jaká cena SPP odpovídala této úrokové míře? Jakou (roční) míru zisku realizoval investor, který SPP koupil za tuto cenu a prodal ji za 58 dní (tj. 33 dny před splatností) za cenu 996 300 Kč?
Př Směnka na $20 000 je splatná za dva roky a 5 měsíců Př Směnka na $20 000 je splatná za dva roky a 5 měsíců. Jaký je její základ při spojitém úrokování s roční nominální úrokovou mírou 15%?
VZTAH MEZI BUDOUCÍ A SOUČASNOU HODNOTOU – VÝNOS INVESTICE, VÝNOSOVÁ KŘIVKA Výnos do splatnosti pro pokladniční poukázku či bezkuponovou obligaci Výnosové křivky Forvardová křivka (očekávání) Durace Konvexita
Cena dluhopisu (P) – tržní, teoretická Obligace (Dluhopisy) je dlouhodobý cenný papír, který vyjadřuje dlužnický závazek emitenta vůči oprávněnému majiteli dluhopisu Doba splatnosti – kdy dochází ke splacení nominální hodnoty dluhopisu může být upravena – emitent si vyhradí právo na předčasné splacení dluhopisů (call opce), toto právo může být dáno majiteli dluhopisu (put opce) dluhopisy s pevnou kuponovou úrokovou sazbou dluhopisy s pohyblivou kuponovou úrokovou sazbou (PRIBOR, LIBOR) dluhopisy s nulovým kuponem Cena dluhopisu (P) – tržní, teoretická
- je – li kupon nulový P = F = (1 + i)n C – roční kuponová úroková platba F – nominální hodnota dluhopisu Př: Vypočítej teoretickou cenu dluhopisu s pevnou kuponovou sazbou 10% p.a., nominální hodnotou 1000 Kč, se splatností 3 roky a při tržní úrokové míře 11%. - je – li kupon nulový P = F = (1 + i)n
Př: Vypočítejte teoretickou cenu dluhopisu s nulovým kuponem se splatností 3 roky, nominální hodnota dluhopisu činí 1000 Kč, při tržní úrokové míře 11% p.a. Výnos z dluhopisu (r) kuponový úrokový výnos rozdíl mezi cenou kupní a prodejní (F) Př: Jaký je výnos dluhopisu s dobou splatnosti 5 let, jestliže kupní cena byla 10 000 Kč a prodejní cena 21 000 Kč? Úroky byly připisovány p.a., p.s., p.q. a p.m.
Př: Kolik bude stát obligace s nominální hodnotou 1 000 Kč, splatná za 3 (5 let) roky, jestliže její výnos je 8% (9%)? Kuponová výnosnost Běžná výnosnost
Alikvotní úrokový výnos (AUV) část kuponového úrokového výnosu, odpovídající době od výplaty posledního kuponu do dne, ke kterému jej počítáme Výnosové období AUV% = pk * tv 360 pk – kuponová úroková sazba dluhopisu tv – délka výnosového období
Výše AUV Čas Datum emise, datum výplaty posledního kuponu Datum vypořádání obchodu Datum výplaty dalšího kuponu
Banka se rozhodla pro krátkodobou investici a zakoupila T-bill (pokladniční poukázky v USA) s nominální hodnotou 1 000 000 $ a dobou splatnosti 13 týdnů nabízený za cenu 968 710 $. Za 60 dní však tuto poukázku prodala firmě, která potřebovala právě na jeden měsíc před jinou očekávanou investicí vhodně umístit své rezervy a byla ochotna za T-bill zaplatit 989 250 $. Byl takový prodej poukázky před jejím datem splatnosti výhodný?
Jiný ukazatel výnosnosti- rendita – zjednodušení výnosnosti do doby splatnosti Výnosnost za dobu držby:
Aproximace – zjednodušení výpočtů výnosnosti do doby splatnosti Hawawiny – Obchodní metoda –
Př: Uvažujte dva pětileté dluhopisy v nominální hodnotě 10 000 Kč s ročními kupony, přičemž dluhopis 1 má kuponovou sazbu 6% a tržní cenu 9 560 Kč a dluhopis 2 má kuponovou sazbu 14% a tržní cenu 10 670 Kč. Spočtěte a) běžný výnos b) výnos do splatnosti c) aproximativní výnosy. Př: Uvažujte tři pětileté dluhopisy v nominální hodnotě 10 000 Kč s ročními kupony, přičemž dluhopis 1 má kuponovou sazbu 9,8% a tržní cenu 10 000 Kč, dluhopis 2 má kup. Sazbu 6% a tržní cenu 8 840 Kč a dluhopis 3 má kup. Sazbu 14% a tržní cenu 11 280 Kč. Spočtěte pro tyto dluhopisy a) hrubý výnos do splatnosti, b) čistý výnos do splatnosti s daňovou sazbou 15 %.
Př: Jaké čisté výnosnosti dosáhne klient, jestliže uložil na počátku roku 100 000 Kč na šestiměsíční termínovaný vklad při 10% úrokové sazbě p.a. a v polovině roku kapitál včetně vyplacených úroků znovu okamžitě uložil na šestiměsíční term. Vklad při 12% úrokové sazbě p.a.?Úroky z vkladů podléhají dani z příjmů ve výši 15%. Př: Dluhopis s pevnou kuponovou úrokovou platbou má kup. Sazbu 10% p.a. , nominální hodnotu 1 000 Kč a kupní cenu 950 Kč. Po jednom roce se dluhopis prodal za cenu 1 150 Kč. Jaká byla hrubá a čistá výnosnost, jestliže úroky podléhají dani z příjmu 25%.
VÝNOSOVÉ KŘIVKY vztah mezi výnosem do splatnosti a dobou do splatnosti dluhopisů (státní) konkrétní dluhopisy lišící se pouze dobou do splatnosti (shodné další vlastnosti) s delší dobou do splatnosti větší výnos (rostoucí)
Výnosová křivka: bezkuponových dluhopisů kuponových dluhopisů Forwardová
Př: Máme tři kuponové dluhopisy v nom Př: Máme tři kuponové dluhopisy v nom. hodnotě 10 000 Kč s ročními kupony. 1 - jednoletý s kup. sazbou 5,8% a tržní cenou 9 980 Kč. 2 - dvouletý s kup. sazbou 7,2% a tržní cenou 9 960 Kč. 3 - tříletý s kup. sazbou 8,9% a tržní cenou 9 920 Kč.Odhadněte odpovídající hodnoty výnosové křivky bezkuponových dluhopisů.
FORWARDOVÁ KŘIVKA (očekávání) znázorňuje závislost mezi forwardovými výnosy do splatnosti a dobou do splatnosti bezkuponových či kuponových dluhopisů křivky rostoucí: forwardová leží vždy nad výnosovými křivkami je z roku na rok, z roku na dva, z roku na tři ………… křivky klesající: forwardová leží vždy pod výnosovými křivkami
je-li rostoucí: trh očekává zvýšení úrokových sazeb je-li klesající, očekává snížení úrokových sazeb Př: Zjistěte body forwardové výnosové křivky, jestliže znáte body výnosové křivky: y1* = 8%, y2* = 9%, y3* = 10% při spojitém připisování úroků.
DURACE Je to aritmetický průměr dob do splatnosti jednotlivých plateb (kromě pořizovací ceny), které souvisejí s dluhopisem a jsou váženy velikostmi plateb diskontovaných ke dni emise. průměrná doba do splatnosti průměrná doba pro získání příjmů spojených s dluhopisem (Macaulayova)
dále je durace mírou citlivosti dluhopisu na změny tržních sazeb (modifikovaná)
Durace je tím nižší čím: vyšší jsou platby plynoucí z dluhopisu do splatnosti dříve platba z daného instrumentu nastává kratší je celková doba do splatnosti
čím menší hodnota durace, tím menší jsou změny v jeho tržní ceně vzhledem ke změnám tržních úrokových sazeb
Př: Vypočítejte DMac , Dmod dluhopisu s pevnou kuponovou úrokovou sazbou 8%, jestliže nominální hodnota dluhopisu je 1.000 Kč, doba do splatnosti 3 roky, aktuální tržní cena je 950,25 Kč a výnosnost do doby splatnosti tedy 10%. (Kuponové platby jsou vypláceny 1x ročně, první bude následovat za rok). O kolik se změní cena tohoto dluhopisu, jestliže se změní úrokové sazby o 1%. Vypočítej přímo a pomocí durace.
Změny hodnot dluhopisu při změnách tržní úrokové míry. Př: Vypočítejte změny počáteční a koncové hodnoty tříletého dluhopisu v nominální hodnotě 10.000 Kč s ročními kupony a kup. sazbou 10% při tržní úrokové míře 10%, jestliže tržní úroková míra klesne (vzroste) o 5% (tj. i = + 5 %).
KONVEXITA Zpřesnění aproximací výpočtu durace se nazývá konvexita.(CX)