Více náhodných veličin

Slides:



Advertisements
Podobné prezentace
Distribuční funkce diskrétní náhodná proměnná spojitá náhodná proměnná
Advertisements

Aritmetický průměr - střední hodnota
Strategické otázky výzkumníka 1.Jaký typ výzkumu zvolit? 2.Na jakém vzorku bude výzkum probíhat? 3.Jaké výzkumné metody a techniky uplatnit?
Ekonomicko-matematické metody č. 11 Prof. RNDr. Jaroslav Ramík, CSc.
Experimentální metody v oboru – Aproximace 1/14 Aproximace Teze přednášek z předmětu „Technický experiment“ © Zdeněk Folta - verze
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ.
Testy hypotéz - shrnutí Testy parametrické Testy neparametrické.
Genetické parametry Heritabilita, korelace. primární GP genetický rozptyl prostřeďový rozptyl kovariance sekundární GP heritabilita opakovatelnost genetické.
© Institut biostatistiky a analýz SPEKTRÁLNÍ ANALÝZA Č ASOVÝCH Ř AD prof. Ing. Jiří Holčík, CSc.
Základy zpracování geologických dat Rozdělení pravděpodobnosti R. Čopjaková.
Náhodné signály Honza Černocký, ÚPGM. Signály ve škole a v reálném světě Deterministické Rovnice Obrázek Algoritmus Kus kódu 2 } Můžeme vypočítat Málo.
Funkce Lineární funkce a její vlastnosti 2. Funkce − definice Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny.
9. SEMINÁŘ INDUKTIVNÍ STATISTIKA 2. TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ.
Definice: Funkce f na množině D(f)  R je předpis, který každému číslu z množiny D(f) přiřazuje právě jedno reálné číslo. Jinak: Nechť A, B jsou neprázdné.
Induktivní statistika
POČET PRAVDĚPODOBNOSTI
Náhodná veličina je veličina, která při opakování náhodného pokusu mění své hodnoty v závislosti na náhodě Náhodné veličiny označujeme X, Y, Z, ... hodnoty.
Interpolace funkčních závislostí
„VĚDA JE, DÁVÁ SPRÁVNÉ ÚDAJE, NEKLESEJTE NA MYSLI, ONA VÁM TO VYČÍSLÍ“
Matematika 3 – Statistika Kapitola 4: Diskrétní náhodná veličina
Lineární funkce - příklady
Řešení nerovnic Lineární nerovnice
ČÍSLO PROJEKTU CZ.1.07/1.5.00/ ČÍSLO MATERIÁLU 1 – Množiny – teorie
„Svět se skládá z atomů“
Výběrové metody (Výběrová šetření)
Jedno-indexový model a určení podílů cenných papírů v portfoliu
8.1.2 Podprostory.
GENETIKA POPULACÍ KVANTITATIVNÍCH ZNAKŮ 8
SIMULAČNÍ MODELY.
Základy statistické indukce
Molekulová fyzika 3. prezentace.
Základy zpracování geologických dat testování statistických hypotéz
Parametry polohy Modus Medián
Elektrické měřící přístroje
GENEROVÁNÍ HODNOT NÁHODNÝCH VELICIN PSEUDONÁHODNÁ ČÍSLA
APLIKACE MATEMATIKY A FYZIKY A Matematická část 2
FSS MUNI, katedra SPSP Kvantitativní výzkum x118 Téma 11: Korelace
Kvadratické nerovnice
Řešení nerovnic Lineární nerovnice
BIBS Informatika pro ekonomy přednáška 2
8.1.3 Lineární obal konečné množiny vektorů
Spojité VELIČINY Vyšetřování normality dat
Rovnice základní pojmy.
SIGNÁLY A LINEÁRNÍ SYSTÉMY
Jak postupovat při měření?
Pravděpodobnost a statistika
XII. Binomické rozložení
Základní statistické pojmy
Úvod do praktické fyziky
Teorie chyb a vyrovnávací počet 1
Fitování Konstrukce křivky (funkce), která co nejlépe odpovídá naměřeným hodnotám. - může podléhat dodatečným podmínkám Lineární vs. nelineární regrese.
Nejistota měření Chyba měření - odchylka naměřené hodnoty od správné hodnoty → Nejistota měření Kombinovaná standartní nejistota: statistické (typ A) -
TŘÍDĚNÍ DAT je základní způsob zpracování dat.
Cauchyho rozdělení spojité náhodné veličiny
Náhodný proces Funkce f(t), kde f(t) je náhodná veličina.
Lomené výrazy (2) Podmínky řešitelnost
Příklad 4.1 M\DG ∑
Běžná pravděpodobnostní rozdělení
Medián, modus Medián Pro medián náhodné veličiny x platí: Modus
Rozoluiční princip.
Fitování Konstrukce křivky (funkce), která co nejlépe odpovídá naměřeným hodnotám. - může podléhat dodatečným podmínkám Lineární vs. nelineární regrese.
Modely obnovy stárnoucího zařízení
Náhodný jev, náhodná proměnná
Nejistota měření Chyba měření - odchylka naměřené hodnoty od správné hodnoty → Nejistota měření Kombinovaná standartní nejistota: statistické (typ A) -
Centrální limitní věta
Princip max. věrohodnosti - odhad parametrů
V praxi je výhodné znát základní typy rozdělení náhodných veličin.
Teorie chyb a vyrovnávací počet 2
Distribuční funkce diskrétní náhodná proměnná spojitá náhodná proměnná
Pravděpodobnost a matematická statistika I.
Transkript prezentace:

Více náhodných veličin Dvě náhodné proměnné x, y mají rozdělení pravděpodobnosti na intervalech Vx, Vy popsáno funkcemi p(x), q(y) Jaká je pravděpodobnost, že x se nachází v intervalu (x, x+dx) a zároveň y se nachází v intervalu (y, y+dy) ? r(x, y) je rozdělení pravděpodobnosti dvou náhodných proměnných.

Více náhodných veličin Rozdělení pravděpodobnosti dvou náhodných proměnných r(x, y) - funguje podobně jako v případě jedné proměnné: střední hodnota: momenty: centrální momenty: (obecně)

Kovariance, koeficient korelace Jak vypadá rozdělení r(x, y) ? Jsou-li x a y nezávislé, skládá se jejich pravděpodobnost: Obecně (např. nejsou-li nezávislé), vyjadřujeme míru jejich vztahu pomocí kovariance. Kovariance: Koeficient korelace: (ko-variance) antikorelované = 0 nezávislé korelované

Kovariance, koeficient korelace Příklady:

Kovariance, koeficient korelace Příklad: Veličiny x a y jsou lineárně závislé: y = a.x + b

n náhodných veličin Obecný případ pro n náhodných veličin: x1, x2, ..., xn - rozdělení pravděpodobnosti: r(x1, x2, ..., xn) Pro každou veličinu xi lze opět psát: střední hodnotu, momenty, disperzi, ... Součet náhodných veličin: ... a jeho střední hodnota:

Aritmetický průměr - střední hodnota Střední hodnota součtu náhodných veličin: (je rovna součtu středních hodnot) Speciálně: pro n-násobné opakování veličiny x Aritmetický průměr: (Zákon velkých čísel)

Disperze aritmetického průměru A co disperze ? Disperze (variance) součtu náhodných veličin: Jsou-li xi nezávislé, Cov(xi, xj) = 0 Pro aritmetický průměr:

Centrální limitní věta Náhodná veličina x je popsána rozdělením pravděpodobnosti p(x). - střední hodnota: - disperze: Aritmetický průměr při n-násobném opakování veličiny x: - je popsáno rozdělením CLV: S rostoucím n se blíží normálnímu rozdělení Na typu rozdělení p(x) nezáleží!

Centrální limitní věta Náhodná veličina x je popsána rozdělením pravděpodobnosti p(x). - střední hodnota: - disperze: Aritmetický průměr při n-násobném opakování veličiny x: - je popsáno rozdělením CLV: S rostoucím n se blíží normálnímu rozdělení Na typu rozdělení p(x) nezáleží!

Princip maximální věrohodnosti Věrohodnostní funkce náhodné veličiny: Funkce je úměrná pravděpodobnosti realizované hodnoty (pro diskrétní veličiny) hustotě pravděpodobnosti (spojité veličiny). Parametry rozdělení/hustoty pravděpodobnosti neznáme, ale předpokládáme, že tato věrohodnostní funkce je na nich závislá. Hledáme takové hodnoty parametrů rozdělení, ze kterých nejpravděpodobněji vyplývají realizované hodnoty, tj. pro které je hodnota věrohodnostní funkce největší.

Princip max. věrohodnosti - odhad parametrů Příklad: Odhad parametru binomického rozdělení z jediného experimentu. Hledáme tedy odhad pro pravděpodobnost realizace p - známe počet realizací k při N pokusech Hledáme hodnotu , pro niž je pravděpodobnost BN,k maximální. (věrohodnostní funkce) → → střední hodnota odhadu = střední hodnotě veličiny → nevychýlený odhad (nepředpojatý, nestranný, unbiased estimate)

Princip max. věrohodnosti - odhad parametrů Odhad parametru binomického rozdělení z jediného experimentu. střední hodnota odhadu p: disperze odhadu p: Pro posouzení kvality (přesnosti) odhadů zkoumáme jejich střední hodnoty: odhad střední hodnoty: odhad disperze: nevychýlený odhad disperze: → nevychýlený odhad vychýlený odhad

Princip max. věrohodnosti - odhad parametrů Odhad parametru Poissonova rozdělení: odhad střední hodnoty: odhad disperze: Relativní nejistotu odhadu lze zlepšit zvýšením k: Obecně lze zlepšit odhad opakováním experimentu. nevychýlený odhad nevychýlený odhad nevychýlený odhad

Opakování nezávislého experimentu Odhad parametru binomického rozdělení z n-krát nezávisle opakovaného experimentu. Výsledkem opakovaného experimentu jsou hodnoty k1, k2, ..., kn. Pravděpodobnost takového výsledku: Opět z podmínky získáme odhad p: srovn.: (pro 1 experiment) Takový odhad je aritmetickým průměrem odhadů získaných z jediného experimentu. nevychýlený odhad

Opakování nezávislého experimentu Binomické rozdělení: odhad střední hodnoty: odhad disperze: podobně pro Poissonovo rozdělení: nevychýlený odhad vychýlený odhad nevychýlený odhad nevychýlený odhad