Centrální limitní věta

Slides:



Advertisements
Podobné prezentace
Aritmetický průměr - střední hodnota
Advertisements

Strategické otázky výzkumníka 1.Jaký typ výzkumu zvolit? 2.Na jakém vzorku bude výzkum probíhat? 3.Jaké výzkumné metody a techniky uplatnit?
Ekonomicko-matematické metody č. 11 Prof. RNDr. Jaroslav Ramík, CSc.
© Institut biostatistiky a analýz SPEKTRÁLNÍ ANALÝZA Č ASOVÝCH Ř AD prof. Ing. Jiří Holčík, CSc.
Základy zpracování geologických dat Rozdělení pravděpodobnosti R. Čopjaková.
Experimentální metody oboru – Pokročilá tenzometrie – Měření vnitřního pnutí Další využití tenzometrie Měření vnitřního pnutí © doc. Ing. Zdeněk Folta,
Náhodné signály Honza Černocký, ÚPGM. Signály ve škole a v reálném světě Deterministické Rovnice Obrázek Algoritmus Kus kódu 2 } Můžeme vypočítat Málo.
1 Obhajoba diplomové práce Sluneční záření a atmosféra Autor: Tomáš Miléř Vedoucí: Doc. RNDr. Petr Sládek, CSc. Oponent: RNDr. Jan Hollan BRNO 2007Katedra.
Úvod do práce v laboratoři Zdeněk Bochníček. Literatura: PÁNEK, Petr. Úvod do fyzikálních měření. Brno: skripta PřF MU, 2001 HORÁK, Zdeněk. Praktická.
9. SEMINÁŘ INDUKTIVNÍ STATISTIKA 2. TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ.
Induktivní statistika
POČET PRAVDĚPODOBNOSTI
Testování hypotéz Testování hypotéz o rozdílu průměrů
Grafické znázornění síly
Náhodná veličina je veličina, která při opakování náhodného pokusu mění své hodnoty v závislosti na náhodě Náhodné veličiny označujeme X, Y, Z, ... hodnoty.
Pravděpodobnostní hodnocení vstupních parametrů zemin a hornin a spolehlivostní analýza geotechnických konstrukcí.
Jak modelovat výsledky náh. pokusů?
Interpolace funkčních závislostí
„VĚDA JE, DÁVÁ SPRÁVNÉ ÚDAJE, NEKLESEJTE NA MYSLI, ONA VÁM TO VYČÍSLÍ“
Matematika 3 – Statistika Kapitola 4: Diskrétní náhodná veličina
Testování hypotéz vymezení základních pojmů
Testování hypotéz Testování hypotéz o rozdílu průměrů
Obecné a centrální momenty
„Svět se skládá z atomů“
Charakteristiky variability
Výběrové metody (Výběrová šetření)
Jedno-indexový model a určení podílů cenných papírů v portfoliu
Základy zpracování geologických dat testování statistických hypotéz
Vybraná rozdělení pravděpodobnosti
8.1.2 Podprostory.
SIMULAČNÍ MODELY.
Základy statistické indukce
Molekulová fyzika 3. prezentace.
Základy zpracování geologických dat testování statistických hypotéz
Parametry polohy Modus Medián
Elektrické měřící přístroje
Rozšířené modely časových řad
GENEROVÁNÍ HODNOT NÁHODNÝCH VELICIN PSEUDONÁHODNÁ ČÍSLA
APLIKACE MATEMATIKY A FYZIKY A Matematická část 2
Kvadratické nerovnice
BIBS Informatika pro ekonomy přednáška 2
Spojité VELIČINY Vyšetřování normality dat
Rovnice základní pojmy.
Střední hodnoty Udávají střed celé skupiny údajů, kolem kterého všechny hodnoty kolísají (analogie těžiště). Aritmetický průměr - vznikne součtem hodnot.
Jak postupovat při měření?
Pravděpodobnost a statistika
XII. Binomické rozložení
Úvod do praktické fyziky
Teorie chyb a vyrovnávací počet 1
Fitování Konstrukce křivky (funkce), která co nejlépe odpovídá naměřeným hodnotám. - může podléhat dodatečným podmínkám Lineární vs. nelineární regrese.
Nejistota měření Chyba měření - odchylka naměřené hodnoty od správné hodnoty → Nejistota měření Kombinovaná standartní nejistota: statistické (typ A) -
Cauchyho rozdělení spojité náhodné veličiny
STATISTICKÉ ZPRACOVÁNÍ DAT (JEDNOROZMĚRNÉ SOUBORY)
Náhodný proces Funkce f(t), kde f(t) je náhodná veličina.
Přesnost a chyby měření
Běžná pravděpodobnostní rozdělení
Fitování Konstrukce křivky (funkce), která co nejlépe odpovídá naměřeným hodnotám. - může podléhat dodatečným podmínkám Lineární vs. nelineární regrese.
Teorie chyb a vyrovnávací počet 1
Náhodný jev, náhodná proměnná
Nejistota měření Chyba měření - odchylka naměřené hodnoty od správné hodnoty → Nejistota měření Kombinovaná standartní nejistota: statistické (typ A) -
Lineární funkce a její vlastnosti
T - testy Párový t - test Existuje podezření, že u daného typu auta se přední pneumatiky nesjíždějí stejně. H0: střední hodnota sjetí vpravo (m1) = střední.
Více náhodných veličin
Teorie chyb a vyrovnávací počet 2
Grafy kvadratických funkcí
Princip max. věrohodnosti - odhad parametrů
Teorie chyb a vyrovnávací počet 2
V praxi je výhodné znát základní typy rozdělení náhodných veličin.
Teorie chyb a vyrovnávací počet 2
Pravděpodobnost a matematická statistika I.
Transkript prezentace:

Centrální limitní věta Náhodná veličina x je popsána rozdělením pravděpodobnosti p(x). - střední hodnota: - disperze: Aritmetický průměr při n-násobném opakování veličiny x: - je popsáno rozdělením CLV: S rostoucím n se blíží normálnímu rozdělení Na typu rozdělení p(x) nezáleží!

Princip maximální věrohodnosti Věrohodnostní funkce náhodné veličiny: Funkce je úměrná pravděpodobnosti realizované hodnoty (pro diskrétní veličiny) hustotě pravděpodobnosti (spojité veličiny). Parametry rozdělení/hustoty pravděpodobnosti neznáme, ale předpokládáme, že tato věrohodnostní funkce je na nich závislá. Hledáme takové hodnoty parametrů rozdělení, ze kterých nejpravděpodobněji vyplývají realizované hodnoty, tj. pro které je hodnota věrohodnostní funkce největší.

Princip max. věrohodnosti - odhad parametrů Příklad: Odhad parametru binomického rozdělení z jediného experimentu. Hledáme tedy odhad pro pravděpodobnost realizace p - známe počet realizací k při N pokusech Hledáme hodnotu , pro niž je pravděpodobnost BN,k maximální. (věrohodnostní funkce) → → střední hodnota odhadu = střední hodnotě veličiny → nevychýlený odhad (nepředpojatý, nestranný, unbiased estimate)

Princip max. věrohodnosti - odhad parametrů Odhad parametru binomického rozdělení z jediného experimentu. střední hodnota odhadu p: disperze odhadu p: Pro posouzení kvality (přesnosti) odhadů zkoumáme jejich střední hodnoty: odhad střední hodnoty: odhad disperze: nevychýlený odhad disperze: → nevychýlený odhad vychýlený odhad

Princip max. věrohodnosti - odhad parametrů Odhad parametru Poissonova rozdělení: odhad střední hodnoty: odhad disperze: Relativní nejistotu odhadu lze zlepšit zvýšením k: Obecně lze zlepšit odhad opakováním experimentu. nevychýlený odhad nevychýlený odhad nevychýlený odhad

Opakování nezávislého experimentu Odhad parametru binomického rozdělení z n-krát nezávisle opakovaného experimentu. Výsledkem opakovaného experimentu jsou hodnoty k1, k2, ..., kn. Pravděpodobnost takového výsledku: Opět z podmínky získáme odhad p: srovn.: (pro 1 experiment) Takový odhad je aritmetickým průměrem odhadů získaných z jediného experimentu. nevychýlený odhad

Opakování nezávislého experimentu Binomické rozdělení: odhad střední hodnoty: odhad disperze: podobně pro Poissonovo rozdělení: nevychýlený odhad vychýlený odhad nevychýlený odhad nevychýlený odhad

Odhad parametrů normálního rozdělení Normální rozdělení: n-krát opakujeme. Věrohodnostní funkce: Řešením podmínek získáme odhady parametrů m a s : Lze opět spočítat odhad střední hodnoty a disperze.

Odhad parametrů normálního rozdělení odhad střední hodnoty: odhad disperze: → nevychýlený odhad disperze: Výsledek měření veličiny x s normálním rozdělením bychom tedy mohli zapsat jako: - interpretujeme: x leží s pravděpodobností P v intervalu (m -s, m +s). ? jak ale získat P, když neznáme m, s ? .... známe pouze odhady: , tj. jak kompenzovat konečný počet měření? → Studentovo t-rozdělení nevychýlený odhad vychýlený odhad kde

Odhad parametrů normálního rozdělení Studentovo t-rozdělení: Náhodná veličina u má rozdělení N(0,1). Náhodná veličina v má rozdělení c2(n), normované počtem stupňů volnosti (n-1). Konstrukce u a v: → veličina u má rozdělení N(0,1) → veličina v má rozdělení c2 s n-1 stupni volnosti

Hodnoty tP pro různé pravděpodobnosti P a pro různé počty stupňů volnosti (n-1): Výsledek n-krát opakovaného měření veličiny x: S rostoucím počtem stupňů volnosti (n-1), tj. s rostoucím počtem opakování měření (n), se tP blíží hodnotám pro normální rozdělení. (Důsledek CLV.) Zejména pro malé hodnoty n a vysokou P je korekce výrazná. - tj. máme-li malý počet měření, musíme pro dosažení stejně velké pravděpodobnosti P volit širší interval výskytu okolo .

Příklad - zpracování měření jedné veličiny Mikrometrem byla změřena tloušťka destičky, byly změřeny tyto hodnoty: Výsledek měření udejte: a) se standardní odchylkou b) s mezní chybou (Vliv měřidla prozatím nezapočítáváme.) číslo měření 1 2 3 4 5 6 7 8 9 10 d (mm) 2,45 2,38 2,41 2,71 2,57 2,48 2,39 2,43 2,49 2,55

Příklad - zpracování měření jedné veličiny 1) Spočítáme aritmetický průměr mm, 2) Odchylky jednotlivých hodnot. 3) Nevychýlený odhad standardní odchylky pro di: 4) Vyloučíme hrubé chyby, Koeficient tP pro hladinu pravděpodobnosti 3s (99,73%) a n-1 = 9: 5) Odhad standardní odchylky aritm. průměru : číslo měření (mm) (mm2) 1 2,45 -0,04 0,0013 2 2,38 -0,11 0,0112 3 2,41 -0,08 0,0058 4 2,71 0,22 0,0502 5 2,57 0,08 0,0071 6 2,48 -0,01 0,0000 7 2,39 -0,10 0,0092 8 2,43 -0,06 0,0031 9 2,49 0,00 10 2,55 0,06 0,0041 2,486 0,0920

Příklad - zpracování měření jedné veličiny 6) Spočítáme výslednou nejistotu (korigovanou pomocí tP) jako: a) standardní odchylku aritmetického průměru, P ~ 68.27 % (interval ± s ) (též směrodatná odchylka, střední kvadratická chyba) b) mezní chybu aritmetického průměru, P ~ 99,73 % (interval ± 3s ) 7) Zaokrouhlení a zápis: a) b)