Interpolace funkčních závislostí

Slides:



Advertisements
Podobné prezentace
Fitování Konstrukce křivky (funkce), která co nejlépe odpovídá naměřeným hodnotám. - může podléhat dodatečným podmínkám Lineární vs. nelineární regrese.
Advertisements

Hodnoty tP pro různé pravděpodobnosti P
V experimentu měníme hodnotu jedné nebo několika veličin x i a studujeme závislost veličiny y. - např. měníme, ostatní x i bereme jako parametry ( , ,
Přenos nejistoty Náhodná veličina y, která je funkcí náhodných proměnných xi: xi se řídí rozděleními pi(xi) → můžeme najít jejich střední hodnoty mi a.
Strategické otázky výzkumníka 1.Jaký typ výzkumu zvolit? 2.Na jakém vzorku bude výzkum probíhat? 3.Jaké výzkumné metody a techniky uplatnit?
Ekonomicko-matematické metody č. 11 Prof. RNDr. Jaroslav Ramík, CSc.
Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek, J. Kalina Pearsonova korelace Kolomogorovův-Smirnovův (Lilieforsův)
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ.
Základy zpracování geologických dat Rozdělení pravděpodobnosti R. Čopjaková.
Význam diferenciálních rovnic převzato od Doc. Rapanta.
STATISTICKÉ METODY V GEOGRAFII. Odhady parametrů intervaly spolehlivosti.
9. SEMINÁŘ INDUKTIVNÍ STATISTIKA 2. TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ.
Induktivní statistika
Úvod do testování hypotéz
POČET PRAVDĚPODOBNOSTI
Interpolace funkčních závislostí
Testování hypotéz Testování hypotéz o rozdílu průměrů
Náhodná veličina je veličina, která při opakování náhodného pokusu mění své hodnoty v závislosti na náhodě Náhodné veličiny označujeme X, Y, Z, ... hodnoty.
7. Statistické testování
„VĚDA JE, DÁVÁ SPRÁVNÉ ÚDAJE, NEKLESEJTE NA MYSLI, ONA VÁM TO VYČÍSLÍ“
Matematika 3 – Statistika Kapitola 4: Diskrétní náhodná veličina
Testování hypotéz vymezení základních pojmů
Testování hypotéz Testování hypotéz o rozdílu průměrů
Výběrové metody (Výběrová šetření)
Jedno-indexový model a určení podílů cenných papírů v portfoliu
Základy zpracování geologických dat testování statistických hypotéz
Testování hypotéz o rozdílu průměrů: Analýza rozptylu
Regrese – jednoduchá regrese
SIMULAČNÍ MODELY.
Statistická analýza dat
Párový neparametrický test
Základy statistické indukce
Molekulová fyzika 3. prezentace.
ASTAc/01,03 Biostatistika 6. cvičení
Základy zpracování geologických dat testování statistických hypotéz
Parametry polohy Modus Medián
SÁRA ŠPAČKOVÁ MARKÉTA KOČÍBOVÁ MARCELA CHROMČÁKOVÁ LUKÁŠ BARTOŠ B3E1
GENEROVÁNÍ HODNOT NÁHODNÝCH VELICIN PSEUDONÁHODNÁ ČÍSLA
FSS MUNI, katedra SPSP Kvantitativní výzkum x118 Téma 11: Korelace
NOMINÁLNÍ VELIČINY Odhad hodnoty pravděpodobnosti určitého jevu v základním souboru Test hodnoty pravděpodobnosti určitého jevu v základním souboru Srovnání.
8.1.3 Lineární obal konečné množiny vektorů
Spojité VELIČINY Vyšetřování normality dat
PSY252 Statistická analýza dat v psychologii II
Jevy a náhodná veličina
XII. Binomické rozložení
Úvod do praktické fyziky
Teorie chyb a vyrovnávací počet 1
Fitování Konstrukce křivky (funkce), která co nejlépe odpovídá naměřeným hodnotám. - může podléhat dodatečným podmínkám Lineární vs. nelineární regrese.
Nejistota měření Chyba měření - odchylka naměřené hodnoty od správné hodnoty → Nejistota měření Kombinovaná standartní nejistota: statistické (typ A) -
Lineární regrese.
Cauchyho rozdělení spojité náhodné veličiny
Náhodný proces Funkce f(t), kde f(t) je náhodná veličina.
Analýza variance (ANOVA).
Běžná pravděpodobnostní rozdělení
Fitování Konstrukce křivky (funkce), která co nejlépe odpovídá naměřeným hodnotám. - může podléhat dodatečným podmínkám Lineární vs. nelineární regrese.
Teorie chyb a vyrovnávací počet 1
Teorie chyb a vyrovnávací počet 1
Interpolace funkčních závislostí
Náhodný jev, náhodná proměnná
Nejistota měření Chyba měření - odchylka naměřené hodnoty od správné hodnoty → Nejistota měření Kombinovaná standartní nejistota: statistické (typ A) -
Testování hypotéz H0 – nulová hypotéza
Centrální limitní věta
Lineární funkce a její vlastnosti
T - testy Párový t - test Existuje podezření, že u daného typu auta se přední pneumatiky nesjíždějí stejně. H0: střední hodnota sjetí vpravo (m1) = střední.
Teorie chyb a vyrovnávací počet 1
Více náhodných veličin
Teorie chyb a vyrovnávací počet 2
Testování hypotéz - pojmy
Grafy kvadratických funkcí
Teorie chyb a vyrovnávací počet 2
Transkript prezentace:

Interpolace funkčních závislostí V experimentu měníme hodnotu jedné nebo několika veličin xi a studujeme závislost veličiny y. - např. měníme , ostatní xi bereme jako parametry (a, b, g, ...): Chceme posoudit platnost závislosti y na xi z výsledků experimentu. → tj. chceme získat odhady parametrů např. pro N hodnot jsme naměřili N hodnot Předpokládáme, že známe funkční závislost f a že přesnost nastavení hodnot veličiny x je řádově větší, než přesnost měření závisle proměnné y (která má obecně pro každý bod jinou dispersi). ... teoretická závislost (fyzikální zákon)

Metoda nejmenších čtverců Metoda početní interpolace. Používá se pro získání odhadů parametrů : 1) Zkonstruujeme veličinu 2) Hledáme minimum c2(a,b,g,...). x 1 2 3 4 5 6 7 y 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Metoda nejmenších čtverců - lineární fit lineární fit, y = mx minimalizace c2: disperze m: problém: co když neznáme x 5 10 15 20 y -10 30 40 50 60 m = 2.48  0.03

Metoda nejmenších čtverců - lineární fit Pokud jsou neznámé, ale stejné, potom Pro neznámou disperzi pak lze spočítat odhad: ozn. - nevychýlený odhad: Odhad disperze m je tedy: ... minimální suma čtverců odchylek

Fitování Konstrukce křivky (funkce), která co nejlépe odpovídá naměřeným hodnotám. - může podléhat dodatečným podmínkám Lineární vs. nelineární regrese Interpolace a vyhlazování (spline) Regresní analýza a extrapolace Softwarové nástroje - Excel, Origin, Sigmaplot, ... - gnuplot, Octave, R, ... metoda největšího spádu Gaussova-Newtonova metoda algoritmus Levenberg–Marquardt simplex

Testování hypotéz - pojmy Statistická hypotéza - tvrzení o tom, jaké je rozdělení pozorované náhodné veličiny Test hypotézy - pravidlo, pomocí kterého hypotézu zamítneme nebo nezamítneme. - obvykle: tzv. nulová hypotéza H0 vs. alternativní hypotéza H1. Chyba: - pokud je platná hypotéza zamítnuta (chyba 1. druhu) - pokud neplatná hypotéza zamítnuta není (chyba 2. druhu) - pravděpodobnost výskytu chyb určuje kvalitu našeho testu. Hladina významnosti a: pravděpodobnost chyby 1. druhu nepřekročí hodnotu a Síla testu: 1-(pravděpodobnost chyby 2. druhu) Testovací kritérium (testovací statistika) p-hodnota: jak často nastává situace svědčící proti testované hypotéze. hypotézu H0 zamítáme na hladině pravděpodobnosti a, pokud je p-hodnota < a (kritický obor - množina hodnot, pro které test hypotézu zamítá)

Testování hypotéz, příklad Z 30 hodů mincí padl 19x orel a 11x panna. Je mince poctivá? a=5% nulová hypotéza H0: mince je poctivá (výsledky se řídí binomickým rozdělením) alternativní hypotéza H1: mince není poctivá (nemá binomické rozdělení) spočítáme p-hodnotu: pravděpodobnost, že poctivá mince dá tento výsledek p-hodnota je pravděpodobnost, že: padne 19x a více orel nebo padne 19x a více panna p-hodnota = 2x 0,100244 ~ 0,2 p-hodnota je větší než hladina významnosti 5%, hypotézu tedy nezamítneme. např. pro 21x orel a 9x panna už by p-hodnota byla 0,043 a H0 bychom zamítli.

Testování hypotéz, c2-test testy střední hodnoty, rozptylu, párové testy, testy (ne)závislosti, trendů, optimality, ... c2-test dobré shody (c2-test kvality fitu, Pearsonův c2-test) testuje nulovou hypotézu, která říká, že rozdělení četnosti zkoumané náhodné veličiny odpovídá nějakému konkrétnímu rozdělení (normální, rovnoměrné, ...) náhodný pokus nám dává k výsledků při N nezávislých opakování pokusu: - pozorujeme četnosti: n1, ..., nk - výsledky nastávají s pravděpodobnostmi: p1, ..., pk. - očekávané četnosti jsou: Np1, ..., Npk Tedy: H0: H1: alespoň pro jedno i platí: c2-test dobré shody je založen na statistice: většinou požadujeme ni > 5

Testování hypotéz, c2-test Testovací statistika: - srovnáváme ji s hodnotou rozdělení c2 s (k-N) stupni volnosti. Použijeme stejný postup: spočítáme p-hodnotu hypotézu H0 zamítneme, je-li p-hodnota menší než hladina významnosti a, (typicky a = 0.01 až 0.05) tj. pokud: