BA008 Deskriptivní geometrie

Slides:



Advertisements
Podobné prezentace
Lineární perspektiva užívá místo S2 název H
Advertisements

BA03 Deskriptivní geometrie
přednášková skupina P-B1VS2 učebna Z240
ÚLOHY Z GEOMETRIE č. 3 Učivo – Obdélník, čtverec
BA03 Deskriptivní geometrie
Šroubovice a šroubové plochy
Základy rovnoběžného promítání
Deskriptivní geometrie
Průsečík přímky a roviny
2.9.1 Rozšíření euklidovského prostoru o nevlastní prvky
Zářezová metoda Kosoúhlé promítání
BA03 Deskriptivní geometrie pro kombinované studium
Deskriptivní geometrie
GEOMETRICKÉ MODELOVÁNÍ
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření:
EU peníze středním školám – digitální učební materiál
EU peníze středním školám – digitální učební materiál
EU peníze středním školám – digitální učební materiál
Číslo projektu: CZ.1.07/1.5.00/ Číslo a název šablony klíčové aktivity: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast,
nerozvinutelné (zborcené) Zborcený rotační hyperboloid.
Koule a kulová plocha v KP
Rovnoběžné promítání. Nevlastní útvary. Osová afinita v rovině.
Technické kreslení Kosoúhlé promítání
Informatika akademický rok 2012/2013 Úvod k předmětu.
Volné rovnoběžné promítání - úvod
2.přednáška Mongeova projekce.
Deskriptivní geometrie DG/PÚPN
Vypracoval: Ing. Ladislav Fiala
Středové promítání dané průmětnou r a bodem S (Sr) je zobrazení prostoru (bez S) na r takové, že obrazem bodu A je bod A‘=SAr. R – stopník přímky.
VY_32_INOVACE_33-03 III. Zobrazení přímky.
Tato prezentace byla vytvořena
4.OBECNÁ AXONOMETRIE A KOSOÚHLÉ PROMÍTÁNÍ
Otáčení roviny, skutečná velikost útvaru (MP)
Autor: Mgr. Jana Pavlůsková Datum: duben 2012 Ročník: 8. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Tematický.
Střední škola stavební Jihlava
MATEMATIKA Planimetrie - úvod.
Praktická ukázka nových výukových textů deskriptivní geometrie RNDr. Hana Šafářová Mgr. Jan Šafařík Ústav.
Číslo projektu: CZ.1.07/1.5.00/ Číslo a název šablony klíčové aktivity: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast,
Přednáška č. 2 Kótované promítání. Opakování
Číslo projektu: CZ.1.07/1.5.00/ Číslo a název šablony klíčové aktivity: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast,
Konstruktivní geometrie
Co dnes uslyšíte? Afinita Důležité body a přímky.
EU peníze středním školám – digitální učební materiál
SGEO2B Témata závěrečných prací. Ukázka.. Formální stránka práce Titulní strana: škola, název práce, autor, datum Písmo vel. 12, řádkování 1,5 Okraje:
Řezy v axonometrii Duben 2015.
BA03 Deskriptivní geometrie přednášková skupina P-B1VS2 učebna Z240 letní semestr 2015/2016 RNDr. Lucie Zrůstová.
1 Dopravní simulace Lekce 1:Úvod. 2 Představení Ondřej Přibyl, Ph.D. Schůzky: Konzultační hodiny: dohodou.
HRANOL, JEHLAN v kótovaném promítání Blan ka Wagnerová Úvod do studia DG.
ŘEZ HRANOLU ROVINOU OB21-OP-STROJ-KOG-MAT-S
VÝVOJ ZOBRAZOVACÍCH METOD malá historická exkurze Blan ka Wagnerová Úvod do studia DG.
Zobrazení přímky a roviny
ŘEZ KUŽELE ROVINOU - KUŽELOSEČKY
PARABOLICKÝ ŘEZ KUŽELE
Gymnázium B. Němcové Hradec Králové
ŘEZ KUŽELE OB21-OP-STROJ-DEG-MAT-L ŘEZ KUŽELE OB21-OP-STROJ-DEG-MAT-L
ROVINA A JEJÍ PRVKY - hlavní přímky
Základní principy DESKRIPTIVNÍ GEOMETRIE a promítání
RNDr. Lucie Zrůstová, PhD.
Axonometrie - Konstrukce tělesa OB21-OP-STROJ-DEG-MAT-L
HYPERBOLICKÝ ŘEZ KUŽELE
Autor: Mgr. Lenka Doušová
ŘEZ VÁLCE OB21-OP-STROJ-DEG-MAT-L ŘEZ VÁLCE OB21-OP-STROJ-DEG-MAT-L
Gymnázium B. Němcové Hradec Králové základní konstrukční úlohy
Gymnázium J. V. Jirsíka, F. Šrámka 23, České Budějovice
Vybrané promítací metody
BA008 Konstruktivní geometrie
BA008 Konstruktivní geometrie
Autor: Mgr. Lenka Doušová
RNDr. Lucie Zrůstová, PhD.
Gymnázium J. V. Jirsíka, F. Šrámka 23, České Budějovice
Transkript prezentace:

BA008 Deskriptivní geometrie RNDr. Lucie Zrůstová, Ph.D. přednášková skupina P-B1VS2 učebna Z240 letní semestr 2016/2017

Kontakt: Ústav matematiky a deskriptivní geometrie Žižkova 17, 662 37 Brno místnost Z217 telefon: 541147613 e-mail: zrustova.l@fce.vutbr.cz www: http://www.fce.vutbr.cz/MAT/zrustova.l konzultační hodiny: úterý 10:00 – 11.40

Základní literatura: KOLEKTIV AUTORŮ, Deskriptivní geometrie pro I. ročník kombinovaného studia, Fakulta stavební VUT v Brně, 2004. CD – k dostání na podatelně KOLEKTIV AUTORŮ: Sbírka řešených příkladů z deskriptivní geometrie pro I. ročník Stavební fakulty Vysokého učení technického v Brně - http://math.fce.vutbr.cz/vyuka/index.html KOLEKTIV AUTORŮ: Multimediální sbírka zkouškových příkladů z deskriptivní geometrie http://math.fce.vutbr.cz

Doporučená literatura: Piska Rudolf, Medek Václav - Deskriptivní geometrie I, SNTL/SVTL, Praha 1966. Piska Rudolf, Medek Václav - Deskriptivní geometrie II, SNTL/ALFA, Praha 1975. Vala, Josef: Deskriptivní geometrie I, Fakulta stavební VUT, Brno 1997. Vala, Josef: Deskriptivní geometrie II, Fakulta stavební VUT, Brno 1997. Topografické plochy: http://math.fce.vutbr.cz/vyuka.php http://user.mendelu.cz/tihlarik/topografickeplochy.html Řešení střech: CD

Cíl předmětu: Zvládnout konstrukci elipsy na základě ohniskových vlastností, základy stereometrie, perspektivní afinity, perspektivní kolineace, základy promítání: kótovaného, kolmé axonometrie a lineární perspektivy. Zvládnout zobrazení jednoduchých geometrických těles a ploch v kótovaném promítání a kolmé axonometrii, jejich řezy a průsečíky s přímkou. V lineární perspektivě zobrazení stavebního objektu. Zvládnou základní konstrukce na topografických plochách a základy teoretického řešení střech.. http://www.fce.vutbr.cz/studium/predmety/Predmet.asp?kod=BA03

Harmonogram předmětu: Rozšířený euklidovský prostor. Princip promítání středového a rovnoběžného. Perspektivní kolineace, perspektivní afinita. Systém základních úloh, užití na příkladech, kótované promítání. Kótované promítání(základní konstrukce, průmět tělesa). Kótované promítání. Mongeova projekce – uvedení do problému. Topografické plochy(základní pojmy a konstrukce, trasování). Topografické plochy(trasování). Teoretické řešení střech. http://www.fce.vutbr.cz/studium/predmety/Predmet.asp?kod=BA03

Harmonogram předmětu: Teoretické řešení střech. Kolmá axonometrie. Úvod do středového promítání. Lineární perspektiva. Lineární perspektiva. Lineární perspektiva http://www.fce.vutbr.cz/studium/predmety/Predmet.asp?kod=BA03

Informace k zápočtu a zkoušce Zápočet: Zkouška: Docházka Písemka Rysy Domácí úkoly Ukázkové příklady. CD Sbírka zkouškových úloh. http://math.fce.vutbr.cz/