Rozcvička Urči typ funkce:

Slides:



Advertisements
Podobné prezentace
Rozcvička Urči typ funkce:
Advertisements

Rozcvička Urči typ funkce:.
Graf kvadratické funkce
Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.
Prvňáci a matematika Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Rozklad mnohočlenů na součin Rozkladové vzorce Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického.
Lichoběžníky a jejich vlastnosti Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným.
KOLEKCE ÚLOH PRO MATEMATICKÝ SEMINÁŘ kružnice opsaná trojúhelníku
Funkce Konstantní a Lineární
Rozcvička Urči typ funkce:
Thaletova kružnice Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN:  ,
Funkce Absolutní hodnota
Převody – jednotky délky
Druhá odmocnina Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN:  ,
Konstrukce trojúhelníku
PÉČE O ZDRAVÍ Obrázek dostupný z:
Druhá odmocnina Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN:  ,
Provozováno Výzkumným ústavem pedagogickým v Praze.
Druhá odmocnina Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN:  ,
Matematický kufr Verze 3
Provozováno Výzkumným ústavem pedagogickým v Praze.
Matematický rychlokvíz 3
Matematický rychlokvíz 3
Repetitorium z matematiky Podzim 2012 Ivana Medková
Soustava souřadnic Oxy
Rozcvička Urči typ funkce:
Poznávačka - sudokopytníci a lichokopytníci
Najdi rozdíl II. Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Název prezentace (DUMu): Mocninná funkce – řešené příklady
Pracovní listy – vnitřní orgány a kostra
Lineární Přímá úměra Konstantní
Pravidla pro počítání s mocninami
Orofacionální cvičení I
Úvod do geometrie Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN: 1802–4785,
Hyperoskulační kružnice elipsy
PROVĚRKY Převody jednotek délky - 2.část
Převody délky MATEMATIKA
WHAT IS WHITE? Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým.
WHAT IS GREY? Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým.
Graf nepřímé úměrnosti
Shodnost rovinných útvarů Shodnost trojúhelníků
Druhá mocnina a odmocnina
Určení severního pólu cívky s proudem pomocí pravidla pravé ruky
Thaletova kružnice Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Kamila Kočová. Dostupné z Metodického portálu ISSN:  ,
Vzájemná poloha dvou kružnic
Vyberte správně definiční obor funkce podle obrázku
Matematický milionář Foto: autor
Provozováno Výzkumným ústavem pedagogickým v Praze.
Ivana Kuntová, Pětiúhelník Přesná konstrukce velikosti strany pětiúhelníku ze zadaného poloměru opsané kružnice Ivana Kuntová,
ČLOVĚK – VNITŘNÍ ORGÁNY A KOSTRA
Pracovní listy – vnitřní orgány a kostra
Provozováno Výzkumným ústavem pedagogickým v Praze.
Soustava rovnic Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým.
Provozováno Výzkumným ústavem pedagogickým v Praze.
Základní větné členy 1 Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Jaroslava Zámostná. Dostupné z Metodického portálu
SČÍTÁME A ODČÍTÁME DO 5 S KAMARÁDEM
Kvadratická funkce Funkce daná rovnicí , kde . Definiční obor:
Převody – jednotky délky
Konstrukce trojúhelníku podle věty sus
Převody jednotek hmotnosti – 2. část
Konstrukce pravoúhlého trojúhelníku pomocí Thaletovy kružnice,
Definiční obor funkce Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Funkce Pojem funkce Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
Kvadratická rovnice Vlastnosti kořenů kvadratické rovnice
Převody jednotek obsahu - 2.část
Vyberte správně definiční obor funkce podle obrázku
Definiční obor funkce Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem.
WHAT IS GREEN? Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým.
Provozováno Výzkumným ústavem pedagogickým v Praze.
Konstrukce trojúhelníku podle věty sus
Transkript prezentace:

Rozcvička Urči typ funkce: Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze

Rozcvička Doplň chybějící souřadnici: Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze

Kvadratická funkce x y Narýsuj graf funkce: Vlastnosti funkce 9 graf – parabola D(f) = R H(f) = 0;  vrchol paraboly v bodě V[0; 0] souměrná podle osy y klesající v D(f) = (-; 0 rostoucí v D(f) = 0;  x = 0 – nejmenší hodnota fce = minimum x x 4 x x x -3 -2 -1 2 3 Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze

Kvadratická funkce x y Narýsuj graf funkce: Vlastnosti funkce graf – parabola D(f) = R H(f) = (-; 0 vrchol paraboly v bodě V[0; 0] souměrná podle osy y rostoucí v D(f) = (-; 0 klesající v D(f) = 0;  x = 0 – největší hodnota fce = maximum Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze

Kvadratická funkce Rovnice: Vlastnosti kvadratické funkce graf – parabola D(f) = R parabola má vrchol V souměrná podle osy y je rostoucí i klesající má maximum nebo minimum Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze

Kvadratická funkce v závislosti na a je-li a>0, potom má kvadratická funkce vždy minimum Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze

Kvadratická funkce v závislosti na a je-li a<0, potom má kvadratická funkce vždy maximum Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze

Kvadratická funkce Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze

Kvadratická funkce Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze

Kvadratická funkce Narýsuj graf funkce f: y = - x2 urči největší hodnotu této funkce b) jaká je hodnota této funkce pro x = 2 c) pro která x je hodnota této funkce rovna (-1) d) v jakém intervalu je tato funkce rostoucí e) pro která x je hodnota této funkce největší Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze

Doplň hodnoty funkce y = 3x2 do tabulky: Kvadratická funkce Doplň hodnoty funkce y = 3x2 do tabulky: x - 3 1 2 -5 0,6 -0,8 -2 0,1 y Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze

Kvadratická funkce Doplň na místa otazníků taková čísla, aby uvedené body patřily do grafu kvadratické funkce: A[ 1 ; ? ] B[ 2 ; ? ] C[ -1 ; ? ] D[ 0,1 ; ? ] E[ ? ; 8 ] bod E nepatří do dané fce Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze

Kvadratická funkce Doplň na místa otazníků taková čísla, aby uvedené body patřily do grafu kvadratické funkce: A[ 1 ; ? ] B[ 2 ; ? ] C[ -1 ; ? ] D[ 0,1 ; ? ] E[ ? ; 8 ] Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze

Kvadratická funkce Doplň na místa otazníků taková čísla, aby uvedené body patřily do grafu kvadratické funkce: A[ 1 ; ? ] B[ 2 ; ? ] C[ -1 ; ? ] D[ 0,1 ; ? ] E[ ? ; 8 ] Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze

Kvadratická funkce Doplň na místa otazníků taková čísla, aby uvedené body patřily do grafu kvadratické funkce: A[ 1 ; ? ] B[ 2 ; ? ] C[ -1 ; ? ] D[ 0,1 ; ? ] E[ ? ; 8 ] Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze

Kvadratická funkce Na grafu kvadratické funkce y = ax2 leží bod A[ -3 ; -18 ] b) B[ -2 ; -10 ] c) C[ 2 ; 2 ] Urči čemu se rovná a. Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze

Kvadratická funkce Narýsuj: o -2 Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze

Kvadratická funkce - vrchol paraboly 2 -1 -2

Kvadratická funkce - vrchol paraboly Načrtni: 2 -1 Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze