Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
1
Statistika 2. přednáška Ing. Marcela Čapková
2
Základní statistické pojmy
Popisná statistika (deskriptivní) Zabývá se sběrem údajů o všech prvcích nějaké přesně vymezené skupiny (například o všech obyvatelích jistého regionu) a jejich zpracování. Matematická statistika Je věda, zabývající se induktivními metodami určování vlastností celého statistického souboru.
3
Základní soubor, statistický znak, statistická jednotka
Definice: Základní soubor je určitá, věcně, prostorově a časově vymezená množina všech zkoumaných prvků, u kterých zjišťujeme hodnoty jisté sledované veličiny. Sledovaná veličina se nazývá statistický znak. Prvky základního souboru nazýváme statistické jednotky. Základním souborem je určitá množina prvků (osob, zvířat, automobilů, území, podniků, událostí, materiálů, chemických prvků atd.) Př.: Studenti, kteří ve školním roce 2008/2009 skládali zkoušku z matematiky na BIVŠ. Prvky základního souboru musí splňovat 3 podmínky: Věcné vymezení Společné vlastnosti, jimiž se každý prvek souboru musí projevovat a které musí být u každého souboru stejné. Osoby skládající zkoušku z matematiky. Časové vymezení Období, do kterého musí zkoumané statistické jednotky patřit. Studenti skládají zkoušku z matematiky ve školením roce 2008/2009. Prostorové vymezení Určení regionu nebo místa, kde bude statistický průzkum (statistické šetření) probíhat. Sledujeme jen ty osoby, které studovali na BIVŠ.
4
Statistický znak, statistická jednotka
Všechny prvky základního souboru se musí vyznačovat statistickým znakem (veličinou), který vyšetřujeme. Prvek, který tento znak nemá, do souboru nepatří. Statistická jednotka Statistické jednotky jsou nositeli vlastností základního souboru. Některé vlastnosti statistických jednotek musí být shodné – podle nich rozhodujeme, zda skutečně statistická jednotka do souboru patří nebo ne. Jiné vlastnosti jsou potom předmětem statického setření – jsou tedy statistickými znaky.
5
Kvalitativní a kvantitativní znak
Kvalitativní znak Demografický průzkum obyvatelstva ČR v roce 2008. Základní soubor obyvatelé ČR Statistické jednotky jednotlivé osoby Statistické znaky Národnost, rodinný stav, nejvyšší dosažené vzdělání. Kvantitativní znak Průzkum peněžních vydání domácností v ČR. Všechny domácností ČR domácnosti Vydání za potraviny, vydání za průmyslové zboží, služby, splátky, méně obvyklá vydání mohou být zahrnuta do položky ostatní vydání. Uvedené znaky jsou kvantitativní a vyjadřují se v korunách.
6
Statistické značení X - veličina představující statistický znak - může nabývat mnoha různých hodnot xi - konkrétní hodnoty, kterých může statistika nabývat (hodnoty statistického znaku) n - počet prvků tvořící základní soubor ni - počet prvků základního souboru, majících hodnotu statistického znaku xi, absolutní četnosti, pi - relativní četnosti zi - reprezentant (zástupce) intervalu, se kterým provádíme výpočty Ze zkoušky ze statistiky získali studenti BIVŠ následující známky: 1; 1; 2; 2; 2; 2; 3; 3; 3; 4; X - známka z matematiky (statistický znak) xi - známky ni - počty studentů 1 x1 2 n1 x2 4 n2 3 x3 n3 x4 n4 Celkem * 10 n
7
Absolutní četnosti xi - známky ni - počty studentů xi * ni 1 2 4 8 3 9
Třídní četnost (skupinová četnost) Počet jednotek, které jsou zahrnuty do jednotlivých tříd (intervalů). Značíme je písmenem ni. Celková četnost je souhrnem třídních (skupinových) četností, značíme ji n. (0 ≤ ni ≤ N) xi - známky ni - počty studentů xi * ni 1 2 4 8 3 9 5 Celkem 10 24 (xi * ni )
8
Relativní četnosti Relativní četnosti pi vyjadřují strukturu souboru, získají se jako podíl: Vlastnosti relativních četností: pi = 1 … jev jistý pi = 0 … jev nemožný V praxi se někdy násobí relativní četnosti 100; relativní četnost je pak vyjádřena v procentech (%)
9
Relativní četnosti xi - známky ni - počty studentů
(absolutní četnosti) pi - počty studentů (relativní četnosti - ni/n) Způsob výpočtu (relativní četnosti) 1 2 0,2 2/10 4 0,4 4/10 3 0,3 3/10 0,1 1/10 Celkem 10 1,0
10
Třídění Výsledkem statistického šetření bývá mnoho údajů (hodnot statistického znaku). Výsledky nebývají zapsány v použitelné formě. Proto přepisujeme údaje tak, aby forma zápisu co nejlépe vyhovovala našim potřebám. Třídění = logické uspořádání náhodného výběru do určitých skupin, nazývaných třídy.
11
Třídění TŘÍDY MOHOU BÝT TVOŘENY PŘÍMO HODNOTAMI
pokud náhodný výběr obsahuje málo různých hodnot každá hodnota statistického znaku určuje třídu. INTERVALY pokud je v náhodném výběru mnoho různých hodnot jsou třídy určeny intervaly Počet intervalů navrhneme dle Sturgesova pravidla: Toto pravidlo často nelze striktně dodržet. Je nutné přihlédnout k charakteru naměřených dat i ke zvolené délce intervalu. Při volbě počtu intervalů, je vhodné seskupit hodnoty do 6 – 7 intervalů. Větší počet intervalů než 7 opět znepřehledňuje zatříděný soubor. Třídní znak (reprezentant; zi) Je hodnota, zastupující při výpočtech příslušnou třídu (interval). Existuje více způsobů určení třídního znaku. Nejjednodušším (ale ne příliš přesným) způsobem, je považovat za třídní znak střed příslušného intervalu. Střed intervalu stanovíme pomocí aritmetického průměru.
12
Třídění přímo hodnotami: Zjišťovali jsme známky udělené 10ti studentům BIVŠ ze zkoušky z matematiky ve školním roce 2008/2009. Proveďte rozdělení údajů do tříd a sestrojte vhodný typ grafu. Byly zjištěny tyto známky: 3; 2; 4; 2; 3; 1; 2; 3; 4; 2; xi ni pi 1 0,1 2 4 0,4 3 0,3 0,2 Celkem 10 1,0
13
Polygon četností (spojnicový graf)
Na ose x jsou znázorněny hodnoty kvantitativního znaku. Na ose y jsou odpovídající absolutní (ni) resp. relativní (pi) četnosti. Graf, spojující body o souřadnicích [xi ; ni], případně [xi ; pi] pro i = 1, 2, …, k. První souřadnicí je hodnota kvantitativního znaku - xi. Druhou souřadnicí je četnost (absolutní, relativní) - ni.
14
k = 1 + 3,3 * logn = 1 + 3,3 * log10 = 4,3 5 tříd (intervalů) 1 2 3 4
Třídění pomocí intervalů: Zjišťovali jsme počet získaných bodů 10ti studentů BIVŠ ze zkoušky z matematiky ve školním roce 2008/2009. Proveďte rozdělení údajů do tříd a sestrojte vhodný typ grafu . Student mohl v testu získat maximálně 100 bodů. Získané body: 42; 59; 82; 28; 31; 19; 9; 91; 72; 51; Počet intervalů: k = 1 + 3,3 * logn = 1 + 3,3 * log10 = 4, tříd (intervalů) 1 2 3 4 5 6 7 8 9 10 19 28 31 42 51 59 72 82 91 k - počet tříd <xi ; xi+1) zi ni pi 1 <0;20) 10 2 0,2 <20;40) 30 3 <40;60) 50 0,3 4 <60;80) 70 0,1 5 <80;100) 90 Celkem * 1,0
15
Histogram (sloupcový graf)
Na ose x jsou znázorněny intervaly představující třídy. Na ose y jsou odpovídající absolutní (ni) resp. relativní (pi) četnosti. Nad každým intervalem je sestrojen obdelník, jehož výška odpovídá absolutní (relativní) četnosti.
16
Náhodný výběr Cíl statistického zkoumání
poznání vlastností základního souboru. Základní soubor má často velký rozsah zkoumání všech jeho prvků by bylo často neuskutečnitelné, pracné, či nákladné. Proto se statistické zjišťování realizuje jen u vybraných prvků (na vzorku) Tyto vybrané prvky ze základního souboru tvoří: výběrový soubor, nebo-li výběr Výběr by měl být co nejlepším představitelem základního souboru, ze kterého byl vytvořen Na základně poznání vlastností výběrového souboru se usuzuje na vlastnosti celého základního soboru Tomuto postupu uvažování se říká statistická indukce (uvažování z části na celek)
17
Reprezentativní výběr
Podmínky reprezentativního výběru Jednotlivé prvky základního souboru (statistické jednotky) jsou vybírány nezávisle na sobě. Všechny prvky pocházejí ze stejného základního souboru. Každý prvek základního souboru má stejnou možnost dostat se do výběru
18
Výběrové charakteristiky polohy
Určují přibližně polohu hodnot náhodného výběru (a tím i základního souboru) na číselné ose.
19
Výběrové charakteristiky polohy pro nezatříděný soubor
Nechť máme 6 studentů Střední průmyslové školy. Zjišťovali jsme, jaké získali známky z matematiky. Student Známka z matematiky A (Adam) 2 B (Bohuslav) C (Ctirad) D (Daniel) 3 E (Emil) 4 F (Filip) 5 Celkem 18
20
Výběrové charakteristiky variability
Říkají, jak se jednotlivé hodnoty statistického znaku liší od sebe navzájem. Odlišnost jednotlivých hodnot nazýváme Variabilita nebo měnlivost R = Xmax - Xmin
21
Výběrové charakteristiky variability – nezatříděný soubor
Nechť máme 6 studentů Střední průmyslové školy. Zjišťovali jsme, jaké získali známky z matematiky. Student Známka z matematiky A (Adam) 2 B (Bohuslav) C (Ctirad) D (Daniel) 3 E (Emil) 4 F (Filip) 5 Celkem 18
22
Výběrové charakteristiky variability pro nezatříděný soubor
Student Známka (xi) (xi - `x) (xi - `x)² |xi - `x| (xi - `x)3 (xi - `x)4 A (Adam) 2 2-3,00 -1,00 1,00 B (Bohuslav) C (Ctirad) D (Daniel) 3 3-3,00 0,00 E (Emil) 4 4-3,00 F (Filip) 5 5-3,00 2,00 4,00 8,00 16,00 Celkem 18 6,00 20,00
23
Charakteristiky variability
Rozptyl Směrodatná odchylka Absolutní odchylka Variační koeficient Variační rozpětí R = XMAX – XMIN = = 3 Koeficient šikmosti (asymterie) Koeficient špičatosti (excesu)
24
Výpočet charakteristik pro zatříděný soubor
Byl zjišťován prospěch z matematiky studentů 1. ročníku studijní skupiny 1BP-VS na BIVŠ v roce Tabulka udává zjištěné údaje. Pomocný výpočet pro: n `x s² A Sk Ek Známka (xi) Počet studentů (ni) xi*ni (xi - `x)ni (xi - `x) (xi - `x)²ni |xi - `x|ni (xi - `x)3ni (xi - `x)4ni 1 2 -4,12 -2,06 8,48 4,12 -17,45 35,93 3 6 -3,18 -1,06 3,36 3,18 -3,56 3,77 4 12 -0,24 -0,06 0,01 0,24 0,00 8 32 7,53 0,94 7,09 6,67 6,28 Celkem 17 52 -2,24 18,94 15,06 -14,35 45,98
25
Kvantily Kvantil je hodnota proměnné, kdy
hodnoty které jsou menší (a stejné), tvoří určitou stanovenou část rozsahu statistického souboru. Např.: 1 %; 25 %; 50 %; 90 % apod. Hodnoty, které jsou větší (a stejné), tvoří zbývající část rozsahu souboru. Např.: 99 %; 75 %; 50 %; 10% apod. Mezi nejčastěji používané kvantily patří: Kvartily, Decily, Percentily.
26
Kvartily Jsou 3 hodnoty proměnné, které rozdělují neklesající řadu hodnot proměnné na 4 stejné části. 1. kvartil = dolní kvartil x25 je 25 % kvantil, odděluje 1/4 statistických jednotek s nejnižší hodnotou proměnné x od ¾ jednotek s vyšší (stejnou) hodnotou proměnné x. 2. kvartil = prostřední kvartil = medián x50 je 50 % kvantil. 3. kvartil = horní kvartil x75 je 75 % kvantil.
27
Decily Tvoří 9 hodnot proměnné, které rozdělují neklesající řadu hodnot proměnné na 10 stejně četných částí: 1. decil x10 … je 10 % kvantil, 2. decil x20 … je 20 % kvantil, 3. decil x30 … je 30 % kvantil , … … 9. decil x90 … je 90 % kvantil.
28
Percentily Tvoří 99 hodnot proměnné, které rozdělují neklesající řadu hodnot proměnné na 100 stejně četných částí: 1. percentil … je 1 % kvantil 2. percentil … je 2 % kvantil … … 99. percentil … je 99 % kvantil
29
Výpočet kvantilů Pokud hledáme stanovujeme jakoukoliv hodnotu kvantilu, musíme mít vždy hodnoty náhodného seřazeny do neklesající posloupnosti. Tzn. Hodnoty musí být seřazeny podle velikosti od nejmenší hodnoty po největší.
30
Výpočet kvantilů z intervalového rozdělení četností
Vzorec pro výpočet: ; kde: xp = hodnota hledaného kvantilu, xd = dolní hranice intervalu, xh = horní hranice intervalu, id = kumulativní relativní četnost odpovídající xd, ih = kumulativní relativní četnost odpovídající xh.
31
Výpočet kvantilů z intervalového rozdělení četností
32
Výpočet kvantilů z intervalového rozdělení četností
33
Výpočet kvantilů v případě zadaného absolutního výčtu prvků
Vzorec pro výpočet: ; kde: zp = pořadí hledaného kvantilu, n = rozsah základního souboru (rozsah náhodného výběru) p = % hledaného kvantilu, kolika procentní kvantil hledáme.
34
Výpočet kvantilů v případě zadaného absolutního výčtu prvků
35
Výpočet kvantilů v případě zadaného absolutního výčtu prvků
36
Výpočet kvantilů Výpočet kvantilů
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.