Prezentace se nahrává, počkejte prosím

Prezentace se nahrává, počkejte prosím

Jaderné transmutace aneb budeme spalovat jaderný odpad pomocí zařízení s urychlovačem? „Pouze budoucnost může rozhodnout, jestli jsme vybrali právě tu.

Podobné prezentace


Prezentace na téma: "Jaderné transmutace aneb budeme spalovat jaderný odpad pomocí zařízení s urychlovačem? „Pouze budoucnost může rozhodnout, jestli jsme vybrali právě tu."— Transkript prezentace:

1 Jaderné transmutace aneb budeme spalovat jaderný odpad pomocí zařízení s urychlovačem?
„Pouze budoucnost může rozhodnout, jestli jsme vybrali právě tu jedinou správnou cestu a nalezli to nejlepší řešení našich problémů" Albert Einstein Vladimír Wagner Ústav jaderné fyziky AVČR, Řež, E_mail: WWW: 1. Úvod 2. Klasická jaderná energetika 2.1 Klasické reaktory 2.2 Množivé (rychlé) reaktory 2.3 Jaderný odpad 2.4 Přepracování, přechodná a trvalá úložiště 3. Jak transmutovat dlouhodobé radioaktivní izotopy? 3.1 Jak transmutovat prvky 3.2 Tříštivé reakce 3.3 Urychlovačem řízený jaderný transmutor 3.4 Výhody a nevýhody 4. Experimentální studie 4.1 Co, jak, kdy, kde řešit? 4.2 Zkoumání intenzity neutronů 4.3 Příklady experimentů 5. Závěr

2 Klasické jaderné reaktory
Štěpná reakce - štěpení jádra samovolné nebo po získání energie - obvykle se dodá energie záchytem neutronu - doprovázena vznikem neutronů s energiemi v oblasti jednotek MeV ( neutrony na štěpení) (část hned – část zpožděná) Řetězová štěpná reakce: Štěpení nuklidů 235U, 239Pu ... záchytem neutronu U + n → 236U* : 85 % - štěpení 15 % - emise fotonu Velmi vysoké hodnoty účinných průřezů záchytu neutronů pro malé energie neutronů (10-2 eV) Nutnost zpomalování neutronů - moderátor Štěpení - vznik štěpných produktů Záchyt  emise fotonu  rozpad beta - vznik transuranů Multiplikační faktor k - počet neutronů následující generace neutronů produkovaných na jeden neutron předchozí generace k < 1 podkritický systém k = 1 kritický systém k > 1 nadkritický systém Jaderná elektrárna Indian point (USA)

3 1) přírodní uran - složen z 238U a jen 0.72 % 235U
Jaderný reaktor Vnitřek reaktoru při výměně paliva Dukovany – reaktorový sál Palivo: 1) přírodní uran - složen z 238U a jen 0.72 % 235U 2) obohacený uran - zvýšení obsahu 235U na 3-4% (klas.re.) Regulační, kompenzační a bezpečnostní tyče T1/2(238U) = 4,51·109 r, T1/2(235U) = 7,13 ·108 r většinou ve formě UO2 Důležitý odvod tepla (voda) V roce 2001 (podle MAAE): 438 energetických reaktorů výkon 353 GWe produkce 16 % elektřiny celková provozní zkušenost: > reaktorroků Elektrárna Diablo Canyon USA

4 Množivé (rychlé) reaktory
Nemoderované neutrony → nutnost vysokého obohacení uranu % 235U (ekvivalentně 239Pu) Produkce 239Pu: 238U + n → 239U(β-) + γ → 239Ne (β-)→239Pu Z 239Pu více neutronů (3 na jedno štěpení) → produkce více plutonia než se spotřebuje (plodivá zóna) Vysoké obohacení → vysoká produkce tepla →nutnost výkonného chlazení → roztavený sodík (teplota 550 oC) Doba života generace rychlých neutronů velmi krátká → větší role zpožděných neutronů při regulaci Elektrárny: Phenix MWe a Superphenix 1200 MWe (Francie) Rychlý množivý reaktor v Monju (Japonsko) – 280 MWe

5 Jaderný odpad - vyhořelé palivo
Složení: 96 % uran (~1% 235U) 1 % transurany 3 % štěpné produkty (stabilní, krátkodobé, dlouhodobé) Některé dlouhodobé radioaktivní štěpné produkty: 99Tc (2.1105 let), 129I (1.57107 let), 135Cs (2.3106 let) Dlouhodobé transurany: 237Np (2.3106 let), 239Pu (2.3106 let), 240Pu (6.6103 let), 244Pu (7.6107 let), 243Am (7.95103 let) Roční produkce jaderného odpadu ve Francii (75% energie): Vysoce aktivní (1000 Mbq/g) : m Středně aktivní (1 Mbq/g) : m3 Přechodné uložení - důležitý odvod tepla při počáteční fázi (vodní bazény) Přepracování vyhořelého paliva Zpracování a uložení jaderného odpadu Vnitřek reaktoru při výměně paliva Testy vyhořelého paliva (Monju Výměna paliva v reaktorů (USA)

6 Přepracování, přechodná a trvalá úložiště
Přechodná úložiště: a) mezisklady - chladnutí vyhořelého paliva b) přechodná - rozpad krátkodobějších izotopů po 40 letech hlavně 90Sr (28 let) a 137Cs (30 let) a dlouhodobé transurany Přepracování vyhořelého paliva - MOX Rizika: manipulace s vysoce radioaktivním materiálem možnost získání plutonia zneužitelného k výrobě bomby Mokrý mezisklad ve Francii Přepracování vyhořelého paliva, olovnatého sklo - stínění záření gama Elektrárna Fermi 1 (USA)

7 Cementování - míchání s cementovou směsí
Bitumenace - míchání s roztavenou asfaltovou živicí c) Vitrifikace - míchání s roztavenou sklovinou Úprava a zpracování jaderného odpadu: Obrázky převážně ze Švédského programu nakládání s radioaktivním odpadem Manipulace s vysoce aktivním odpadem Vitrifikace Trvalá úložiště jsou zatím v projekci a přípravě: Nutné: dlouhodobě geologicky stabilní formace a velmi dlouhodobá fixace radioaktivního materiálu Trvalé úložiště v USA je připravováno v pohoří Yucca

8 Jaderné reaktory čtvrté generace
Studie šesti různých nových typů reaktorů, čtyři jsou množivé a jen dva jsou klasické Hlavní úkoly: 1) Využít veškerý potenciál jaderného paliva 2) Snížit množství jaderného odpadu na minimum 3) Zvýšit bezpečnost na maximum

9 Jak transmutovat nuklidy
V jaderných reakcích vznikají → jaderné reakce je mohou přeměňovat: Různé typy reakcí: Reakce neutronů s jádry Reakce protonů s jádry Fotojaderné reakce Reakce s jinými částicemi a jádry alchymistická dílna Velmi výhodné reakce s neutrony 1) Dosažení vysoké efektivity transmutace (vysoké pravděpodobnosti reakce s neutronem) → nutnost velmi intenzivního pole neutronů 1016 neutronů cm-2s-1 (klasický reaktor ≤ 1014 neutronů cm-2s-1) 2) Vysoká závislost pravděpodobnosti reakce na energii neutronů → nutnost širokého energetického rozsahu neutronů Efektivní zkracování doby přeměny radioaktivních nuklidů: (σ – účinný průřez reakce Φ – tok neutronů)

10 Tříštivé reakce jako intenzivní zdoj neutronů
Reakce protonu z vysokou energií ( > 100 MeV ) s jádry Velmi intenzivní zdroj neutronů – lze dosáhnout až 1016n/cm2s Přesně to potřebujeme pro efektivní transmutaci Tři etapy tříštivé reakce: 1) Vnitrojaderná kaskáda - nalétávající proton vyráží v nukleon-nukleonových srážkách nukleony z vysokou energií 2) Předrovnovážná emise - výlet nukleonů s vyšší energií z jádra ještě před nastolením tepelné rovnováhy 3) Vypařování neutronů nebo štěpení jádra – jádro v tepelné rovnováze se zbavuje přebytečné energie vypařováním neutronů s energií okolo 5 MeV. Neu- trony vypařují i štěpné produkty Vysokoenergetické nukleony vzniklé v etapě vnitrojaderné kaskády mohou způsobit další tříštivou reakci - hadronová sprška

11 Urychlovačem řízený jaderný transmutor
Z čeho se skládá: 1) Urychlovač protonů - energie MeV 2) Terč - olovo, wolfram … 3) Nádoba obsahující systém jaderného odpadu, moderátoru Nutnost separace stabilních a krátkodobých izotopů Základní vlastnosti: Využívá tříštivých reakcí Velmi vysoká hustota neutronů → efektivní transmutace Podkritický režim provozu 4) Produkce neutronů ve velmi širokém rozmezí energií Výstavba demonstrační jednotky ADTT v LANL (USA) (využití 800 MeV protonů I = 1 mA pro H+ a 100 mA pro H-) Jaderná elektrárna North Anna ve Virginii Schéma koncepce urychlovačem řízeného jaderného transmutoru

12 Urychlovač protonů: E = 100 MeV - 2 GeV I = 20 - 100 mA
Konkrétní projekt jaderného transmutoru Urychlovač protonů: E = 100 MeV - 2 GeV I = mA Problémy: nutnost stabilního bezporuchového provozu po velmi dlouhou dobu. Terč: wolfram? tekuté olovo? urany a transurany? Hustota neutronů: ~1020 m-2s-1 (reaktor ~ m-2s-1) Problémy: odvod velkého množství tepla Podkritický reaktor: Problémy: řešení průběžné separace, efektivního transportu a moderace neutronů Budování tříštivého (spalačního) zdroje neutronu v Oak Ridgi Výroba energie jako v klasické jaderné elektrárně, část z ní napájí urychlovač Návrh na konkrétní urychlovačem řízené transmutační zařízení

13 Tříštivý zdroj neutronů v Oak Ridge
Urychlovač → zdroj iontů + urychlovací systém: Iontový zdroj - výboj akumulační prstenec v laboratoři v Oak Ridge Tekutý terč použit z důvodu efektivního chlazení Lineární urychlovač v Oak Ridge urychluje protony na 1 GeV Tekutý terč ze rtuti v Oak Ridge

14 Výhody a nevýhody urychlovačem řízených transmutorů
1) Podkritický systém, vnější zdroj neutronů → nemůže dojít k nekontrolované řetězové reakci, při poruše se systém zastaví 2) Vysoká hustota neutronů → efektivní transmutace a štěpení 3) Široký rozsah energie neutronů → možnost výběru nejefektivnější oblasti pro dané nuklidy 4) Malá citlivost ke složení spalovaného odpadu 5) Likvidace radioaktivního odpadu i zdroj energie Nevýhody: 1) Nutnost průběžné jaderněchemické separace dlouhodobých nuklidů od krátkodobých a stabilních → radiační riziko pro personál 2) Funguje jen velké zařízení (nemožnost postavení malého prototypu) → velký důraz na modelování, předprojektové a projektové studie 3) Otázka přijatelnosti pro veřejnost - jako každé jaderné zařízení +

15 Co, jak, kdy, kde řešit Technologické:
1) Studie zdrojů neutronů založených na tříštivých reakcích 2) Studie okolo rychlých reaktorů 3) Studie jaderně chemických metod separace 4) Studie odvodu tepla, radiačního poškození, materiálové studie Studie tříštivých reakcí a produkce neutronů: 1) Studie účinných průřezů a produktů tříštivých reakcí na tenkých terčích 2) Studie účinných průřezů jednotlivých reakcí neutronů na tenkých terčích, hlavně pro vyšší energie → vypracování co nejpřesnějších knihoven účinných průřezů a modelů tříštivých reakcí Studie produkce neutronů na tlustých terčích a jejich transportu: 1) Studie neutronového pole v různých místech kolem i uvnitř terče a v různých místech komplikovaných sestav 2) Studie transmutací radioaktivních izotopů v různých sestavách → vypracování programu umožňující přesně simulovat a projektovat různé sestavy Je třeba i pro oblast vyšších energií neutronů a jejich vysoké hustoty dosáhnout přesnosti standardní pro klasické reaktory. Experimentální zařízení v Los Alamos

16 Měření účinných průřezů – experiment n_TOF
Zdroj neutronů – tříštivé reakce Určení jejich energie z doby letu Velmi přesné měření závislostí pravděpodobností reakcí neutronů na jejich energii Testy simulačních programů pomocí složitějších sestav Studium chování složitějších sestav vylepšování programů simulujících produkci A transport neutronů Cesta k reálným projektům urychlovačem řízených transmutorů „zesilovač“ C. Rubbii

17 Příklady experimentů v SÚJV Dubna
Studium produkce neutronů na tlustých terčích Nuclotron (vpravo) Fázotron (dole) v SÚJV Dubna Využití urychlovačů v SÚJV Dubna: Nuklotron Ep = 500 MeV až 5 GeV Fázotron Ep = 660 MeV , proudy I = 1 μA Tlusté olověné a wolframové terče, různé typy moderátorů, uranový blanket, různé vzorky transmutovaných materiálů Svazek: protony s energií 885 MeV Konkrétní příklad: Olověný terč: průměr 9.8 cm tloušťka 50 cm Ukázka olověného terče a uchycení aktivačních detektorů (fólií) pro experimenty při 1.3 a 2.5 GeV

18 Složitější systém olověného terče a uranového blanketu
Olověný terč a blanket s tyčí s přírodního uranu (208 kg) Vzorky a měřící detektory umístěny okolo i uvnitř sestavy Stínění pomocí bedny naplněné polyetylénem Různá energie protonů z urychlovače 0,5 – 3,0 GeV Cíle: 1) Měření toků a spekter neutronů v různých místech sestavy pro srovnání s modelovými výpočty 2) Transmutace radioaktivních materiálů v různých místech sestavy (vzorky materiálu z jaderného odpadu) 3) Materiálové testy, měření produkovaného tepla

19 Určení toku neutronů aktivační metodou
Použivané aktivační folie: Al, Au, Bi, Co, Cu Příklady prahových reakcí: 197Au(n,2n)196Au 197Au(n,4n)194Au 27Al(n,α)24Na Příklad zpracování linek spektra folií Al a Bi pro určení intenzity gama linky: → počtu aktivovaných jader → neutronového toku Záření gama je úměrné toku neutronů s energií vyšší než prahová Měření aktivity záření gama po- mocí germaniových detektorů:

20 Závěr Možnost využití tříštivých reakcí k spalování jaderného odpadu
Možný přínos: 1) Možnost štěpení všech izotopů uranu, thoria a transuranů 2) Alespoň částečná transmutace dlouhodobě radioaktivních štěpných produktů 3) Podkritický systém Nutnost řady studií: 1) Technologických 2) Studia reakcí neutronů a tříštivých reakcí Nutnost získání přesných simulačních programů pro projektování → experimentální jednoduchých i složitějších sestav pro srovnávací studie simulačních programů Jaderné transmutory: 1) Co nejefektivnější využití jaderného paliva 2) Co největší redukce jaderného odpadu Jaderné elektrárny v Dukovanech, Virginii a Koebergu (JAR) Možná budoucí efektivní jaderná energetika - kombinace klasických, rychlých jaderných reaktorů a transmutorů řízených urychlovačem

21 Ústav jaderné fyziky AVČR


Stáhnout ppt "Jaderné transmutace aneb budeme spalovat jaderný odpad pomocí zařízení s urychlovačem? „Pouze budoucnost může rozhodnout, jestli jsme vybrali právě tu."

Podobné prezentace


Reklamy Google