Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
1
6. Přednáška – BBFY1+BIFY1 soustavy částic a srážky
FYZIKA 1 6. Přednáška – BBFY1+BIFY1 soustavy částic a srážky K.E.Ciolkovskij ( )
2
Soustavy částic a tuhá tělesa
BFY1 Soustavy částic a tuhá tělesa Zatím jsme studovali osamocené částice nebo tělesa, která se dala nahradit částicí (hmotným bodem), nyní rozšíříme zkoumání na vícečásticové soustavy. Dvě možnosti pro systém více než jedné částice: Systém jednotlivých oddělených částic Tuhé těleso, které má spojitou strukturu Těžiště – hmotný střed Těžiště tělesa nebo soustavy částic je bod, který se pohybuje tak, jako by v něm byla soustředěna veškerá hmota tělesa (soustavy) a působily v něm veškeré vnější síly působící na těleso (soustavu). Jiné označení: střed hmotnosti.
3
Určování Těžiště soustavy
BFY1 Určování Těžiště soustavy Těžiště T soustavy tvořené dvojicí částic o hmotnostech m1 a m2, které se nacházejí ve vzdálenosti d: y xT m1 m2 x T d Speciální případy: m2 = 0 → xT = 0 … Těžiště je v levé částici m1 = 0 → xT = d … Těžiště je v pravé částici m1 = m2 → xT = d/2 … Těžiště je uprostřed mezi částicemi
4
Určování Těžiště soustavy
BFY1 Určování Těžiště soustavy Stejnou situaci budeme řešit obecněji – počátek soustavy souřadnic volíme mimo částice. Hmotnost celé soustavy M = m1 + m2 y xT m1 m2 x T x1 d x2 Pro x1 = 0 získáme předchozí situaci. Volba vztažné soustavy nemá vliv na polohu těžiště.
5
Určování Těžiště soustavy
BFY1 Určování Těžiště soustavy Pokud situaci zobecníme na soustavu n částic nacházejících se v jedné přímce, lze psát: Při zobecnění na trojrozměrný případ přidáme ještě další souřadnice y, z jednotlivých částic:
6
Těžiště tuhého tělesa BFY1
Zanedbáváme částicovou strukturu a předpokládáme spojitou hmotu složenou z nekonečně malých elementů o hmotnosti dm. V předchozích vzorcích nahradíme sumu integrálem. Za předpokladu, že je těleso homogenní, tj. má ve všech místech stejnou hustotu, lze vzorce dále upravit:
7
Praktické postřehy o těžišti
BFY1 Praktické postřehy o těžišti Jestliže je těleso homogenní a symetrické, je těžiště vždy ve středu, ose nebo rovině symetrie. Při výpočtech s tím počítáme a souřadný systém volíme tak, aby některá osa (většinou x) splývala s osou symetrie. Těžiště trojúhelníka na průsečíku těžnic je těžiště i ve fyzikálním smyslu. Těžnice jsou (kromě svého matematického významu) svislé čáry, které procházejí místem závěsu a mají směr tíhové síly G.
8
Praktické postřehy o těžišti
BFY1 Praktické postřehy o těžišti Těžiště nemusí ležet v tělese, u dutých těles – prsten, obruč, dutý válec, … – leží mimo těleso. Těleso podepřené POD těžištěm lze vybalancovat.
9
Úloha - Početní určování těžiště
BFY1 Úloha - Početní určování těžiště Určete početně polohu těžiště homogenního tělesa, které se skládá z válcové tyče o délce 30 cm a průměru 1 cm, na jejímž jednom konci je připevněn válec o průměru 6 cm a výšce 4 cm a na druhém konci válec o průměru 3 cm a výšce 2 cm. Osa tyče prochází středy podstav obou válců. Těžiště bude ležet na ose tyče, zvolíme soustavu souřadnic s počátkem na jednom konci. Těleso rozdělíme na tři souměrné části, u kterých umíme určit polohu těžiště zpaměti, tyto části budeme považovat za hmotné body. Určíme hodnoty x1, x2 a x3 a hmotnosti jednotlivých částí. Použijeme vzorec pro polohu těžiště.
10
Úloha - Početní určování těžiště
Rozměry jednotlivých částí tělesa: válcová tyč: l = 30 cm, d = 1 cm, levý válec: d1 = 6 cm, h1 = 4 cm pravý válec: d2 = 3 cm, h2 = 2 cm. x1 = 2 cm x2 = = 19 cm x3 = = 35 cm
11
BFY1 1. impulsová věta Těžiště soustavy n částic můžeme chápat jako speciální částici s hmotností celé soustavy M = m1 + m mn, těžiště má polohu xT, rychlost vT a zrychlení aT. Pro pohyb těžiště soustavy platí 1.impulsová věta, která má tvar 2.NZ (pozor, ten platí pro částici, nikoliv pro soustavu): M = const je hmotnost celé soustavy, předpokládáme uzavřenou soustavu, kdy nedochází k výměně hmoty s okolím. aT je zrychlení těžiště soustavy, věta neříká nic o pohybu jednotlivých částic. Pravá strana je součet všech vnějších působících sil. Síly, kterými na sebe působí částice navzájem, jsou vnitřní síly soustavy a jejich součet je podle 3.NZ roven 0. Pozn.: 1.impulsovou větu lze rozepsat po souřadnicích.
12
Věta o hybnosti = 1.imp.věta
BFY1 Věta o hybnosti = 1.imp.věta 2.NZ pro částici lze vyjádřit pomocí změny hybnosti „časová změna hybnosti je přímo úměrná působící síle“. Věta o hybnosti je totéž co 1.impulsová věta, je analogií k 2.NZ v předchozím vyjádření: Kde P je celková hybnost soustavy částic definovaná jako: Poslední rovnost, kdy tvrdíme, že P lze psát jako součin celkové hmotnosti soustavy částic a rychlosti těžiště byl zatím pouze předložen k uvěření, nyní ho odvodíme:….
13
BFY1 Hybnost soustavy je součet jednotlivých hybností všech jejích částic: Odvození provedeme z definice polohy těžiště derivováním (pro souřadnici x, pro ostatní je to analogické) Vynásobíme celou rovnost M: a zderivujeme podle času: Pozn.: Dalším derivováním podle času bychom získali 1. impulsovou větu.
14
Zákon zachování hybnosti
BFY1 Zákon zachování hybnosti Je-li uzavřená soustava izolovaná (nepůsobí na ni vnější síly) nebo je výslednice vnějších sil nulová, platí: Je-li výslednice všech vnějších sil působících na soustavu částic nulová, je její celková hybnost konstantní. Důsledek: Podle vztahu P = MvT musí zůstávat rychlost těžiště soustavy stálá, těžiště se pohybuje rovnoměrným pohybem bez ohledu na případné srážky uvnitř soustavy. Pozn.: ZZH platí i po složkách: jestliže je jedna složka výslednice sil nulová, je hybnost v tomto směru konstantní.
15
BFY1 rakety Raketa by byla těleso s proměnnou hmotností, pokud bychom nezapočítali i zplodiny vzniklé spalováním paliva. Platí ZZH, porovnáme situaci v čase t a v čase t + Δt. Označíme: u – rychlost zplodin vzhledem k raketě M – hmotnost rakety ΔM –hmotnost spáleného paliva Δv – přírůstek rychlosti rakety Pozn.: Kdybychom místo relativní rychlosti zplodin u počítali s rychlostí zplodin U vzhledem k vnější soustavě, vypadala by rovnice složitěji, v – rychlost rakety, u = v + Δv – U Hybnost paliva v čase t+Δt Hybnost rakety v čase t Hybnost rakety v čase t+Δt
16
Meščerského rovnice BFY1 Platí pro rakety.
Vztah vyjadřující ZZH pro raketu vydělíme časovým intervalem Δt (nebo zderivujeme podle času): Zlomek ΔM/Δt (resp. dM/dt) na levé straně vyjadřuje rychlost ubývání paliva, označíme ji R, jednotka je kg.s-1. … je rovnice Meščerského Součin Ru je TAH MOTORU a označuje se jako T. Rovnice zapsaná ve tvaru Ma = T má formální podobu 2.NZ.
17
Ciolkovského vzorec BFY1
Vyjadřuje, jak se mění rychlost rakety při spalování paliva během letu. Upravíme vztah: Zajímá nás změna hmotnosti rakety, takže ΔM, které vyjadřovalo hmotnost spáleného paliva, teď budeme brát jako – ΔM, tedy záporný přírůstek hmotnosti rakety. Jestliže zkrátíme limitně časový interval, můžeme psát: a integrovat: Po integraci získáme Ciolkovského vzorec:
18
BFY1 srážky Srážka je krátkodobý děj, při němž na sebe dvě nebo i více těles vzájemně působí poměrně značnými silami. Působící síly jsou VNITŘNÍ síly soustavy. Je nutné vymezit doby: Před srážkou Při srážce Po srážce Pozn.: Není nutný přímý dotyk nebo kontakt částic při srážce, mohou na sebe silově docela dobře působit prostřednictvím pole, např. gravitačního.
19
BFY1 Impulz síly U působící síly má vliv nejen to, jakou má velikost F, ale i to, po jak dlouhou dobu Δt působí a jak se v závislosti na čase mění, což se projevuje především při srážkách. Při srážce na sebe vzájemně působí tělesa vnitřními silami F(t) a –F(t). Dojde ke změně hybnosti Δp, podle 2.NZ: Výraz vlevo znamená změnu hybnosti Δp = p2 – p1 Výraz vpravo závisí na časovém průběhu síly během srážky a označujeme ho impulz síly.
20
Typy srážek BFY1 Dělení podle směru rychlostí:
Přímá srážka –nejjednodušší typ srážky, rychlosti částic leží v téže vektorové přímce. Šikmá srážka – rychlosti svírají obecný úhel. Zkoumáme při volbě vhodné soustavy souřadnic spojené s jednou částicí a rychlosti zkoumáme po složkách. Dělení podle zachování kinetické energie Ek: Pružná (elastická) srážka – celková kinetická energie soustavy před a po srážce je stejná, přestože se kinetické energie jednotlivých částic mění. Nepružná srážka – celková kinetická energie soustavy srážkou klesá (mění se na vnitřní energii), u dokonale nepružné srážky může klesnout až na nulu.
21
Zákony zachování při srážkách
BFY1 Zákony zachování při srážkách Zákon zachování hybnosti: Celková hybnost soustavy je v každém časovém okamžiku stejná bez ohledu na charakter a typ srážky. Hybnosti jednotlivých částic se měnit mohou. Důsledek: Pohyb těžiště není srážkou nijak ovlivněn, pohybuje se rovnoměrně přímočaře rychlostí vT. Zákon zachování energie: Platí i u nepružných srážek, kinetická energie se změní na jiné druhy energie. U pružné srážky zůstává celková kinetická energie soustavy konstantní, kinetické energie částic se měnit mohou. Kinetická energie těžiště soustavy se srážkou nemění.
22
pevný terč při Pružné srážce
BFY1 pevný terč při Pružné srážce Předpokládáme, že soustava je izolovaná a uzavřená. Srážka je přímá, před srážkou je TERČ v klidu, STŘELA v pohybu, po srážce jsou v pohybu obecně obě částice. m2,v2Z=0 m1 v1Z m2,v2K m1 v1K Vyjdeme ze zákonů zachování a napíšeme rovnice: po úpravách Postřehy: Terč se vždy bude pohybovat ve směru původní rychlosti střely, střela se může odrazit i zpět (záporná rychlost)
23
Pohyblivý terč při Pružné srážce
BFY1 Pohyblivý terč při Pružné srážce Od předchozího případu se liší jen tím, že TERČ není v klidu. m2 m1 v1Z v2Z m2 v2K m1 v1K Opět vyjdeme ze zákonů zachování a napíšeme rovnice: Po výrazně obtížnějších úpravách získáme rovnice pro rychlosti částic po srážce. Jsou v učebnici na straně 243, NEBUDEME si je pamatovat. Budeme je umět odvodit. Rychlost těžiště:
24
nePružné přímé srážky BFY1
Nemůžeme použít zákon zachování mechanické energie, kinetická energie soustavy jako celku se snižuje a mění se na jiný druh energie (většinou vnitřní). U dokonale nepružné srážky může klesnout kinetická energie soustavy až na nulu. Zákon zachování hybnosti platí vždy. Částice se při srážce spojí a po srážce se pohybují společně rychlostí V. Pro vysvětlení „zmizení“ kinetické energie volíme vztažnou soustavu spojenou s těžištěm, která je vždy inerciální.
25
Balistické kyvadlo BFY1 Starší způsob určování rychlosti střely.
Střela o rychlosti v narazí na bednu zavěšenou na závěsu a uvízne v ní. Většina energie střely se změní na vnitřní nebo se spotřebuje na destrukci, ale část energie zvýší Ek bedny, která se změní na potenciální – kyvadlo se zhoupne. Ze ZZH: , kde vB je rychlost bedny po srážce. V době po srážce už platí ZZME: Odtud: Ze ZZH vyjádříme rychlost v střely a dosadíme za vB:
26
Matematický dodatek pružná srážka s pohyblivým terčem
BBFY1 Upravíme každou rovnici pro ZZ zvlášť, na každé straně jsou hodnoty pro jednu částici, hmotnosti vytkneme a ZZE upravíme podle vzorce pro rozdíl druhých mocnin. Rovnice vydělíme (ZZE:ZZH) Vyjádříme v2K a dosadíme do ZZH: Upravíme, na jednu stranu dáme v1K a vytkneme ji, na druhou stranu dáme zbytek: Vyjádříme v1K: Vyměníme indexy (1) a (2), protože nezáleží na pořadí částic.
27
BFY1 Děkuji za pozornost
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.