Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
1
FI-05 Mechanika – dynamika II
2
Hlavní body Blíže k realitě : soustava hmotných bodů a dokonale tuhé těleso První a druhá impulsová věta Hmotný střed Moment setrvačnosti a Steinerova věta Rozklad silového působení na translační a rotační u dokonale tuhého tělesa
3
Soustava hmotných bodů I
Dosud jsme se zabývali mechanikou hmotného bodu. Tato abstrakce se hodila pro pohodlnou definici základních veličin mechaniky, ale při splnění příslušných předpokladů ji lze použít i k řešení skutečných problémů. Obecný sytém lze chápat jako soustavu hmotných bodů, které spolu interagují.
4
První věta impulsová I Na i-tý hmotný bod působí výslednice sil, kterou můžeme rozdělit na výslednici vnitřních sil, pocházejících z iterakce s hmotnými body, které jsou součástí systému a výslednici sil vnějších. Podle 2. Nz.:
5
První věta impulsová II
Celková hybnost systému je vektorový součet všech hybností: Potom platí:
6
První věta impulsová III
Časová změna celkové hybnosti je rovna výslednici vnějších sil. Důsledkem platnosti zákona akce a reakce je totiž součet všech vnitřních sil přes celý systém roven nule :
7
Druhá věta impulsová I Obdobně můžeme uvažovat o otáčivém účinku síly na i-tý hmotný bod vzhledem k libovolnému pevnému bodu O:
8
Druhá věta impulsová II
Celkový moment hybnost systému je vektorový součet všech momentů hybností uvažovaných k témuž pevnému bodu O: Při sčítání přes celý systém opět využíváme důsledku zákona akce a reakce.
9
Druhá věta impulsová III
Časová změna celkového momentu hybnosti je rovna výslednici momentů vnějších sil, vzhledem k pevnému bodu O:
10
Důsledky impulsových vět
Je-li výslednice vnějších sil, působících na systém nulová, zachovává se celková hybnost systému. Je-li výslednice momentů vnějších sil, působících na systém nulová, zachovává se celkový moment hybnosti systému. Vnější síly mají obecně translační i rotační účinek. Je důležité, jak působí vzhledem k hmotnému středu.
11
Příklad – ráz těles I Centrální ráz – hmotné body jsou kuličky, na které nepůsobí žádné vnější síly. Před srážkou se (proti sobě) pohybují dvě kuličky mi, rychlostmi vi. Po srážce mají rychlosti ui. Podle I.VI se vždy zachovává celková hybnost: Ráz se odehrává mezi dvěma mantinely - dokonale nepružný u1 = u2 = u: Dokonale pružný – zachovává se i celková kinetická energie :
12
Ráz těles II po vydělení rovnic dojdeme k řešení
13
Hmotný střed I Celou soustavu lze reprezentovat těžištěm, přesněji hmotným středem , ve kterém je soustředěna celá hmotnost soustavy Získáme ho integrací rovnice : Definice těžiště platí i ve složkách : , ,
14
Hmotný střed II Hmotný střed:
Nezávisí na volbě souřadné soustavy. Ale její vhodná volba může značně usnadnit výpočet. Je v průsečíku prvků symetrie. S ohledem na to volíme souřadnou soustavu. U těles s rotační symetrií lze využít Pappova teorému : dráha těžiště x plocha = objem.
15
Hmotný střed III Uvažujme nový počátek v těžišti Potom :
Této rovnosti lze využít k důkazu důležitých vlastností těžiště : rotace systému kolem libovolné osy, procházející těžištěm a pohyb posuvný neboli translační tohoto těžiště v prostoru jsou pohyby na sobě nezávislé.
16
Hmotný střed IV Druhá věta impulsová tedy platí nejen vztáhneme-li ji k libovolnému pevnému bodu, ale také k těžišti systému, které se může dokonce obecně pohybovat. Je to ale jediný pohyblivý bod vzhledem k němuž tato věta platí.
17
Dokonale tuhé těleso I Rozložení vnějšího účinku na translační a rotační závisí na dodatečných podmínkách. Některé systémy lze považovat za dokonale tuhé. Znamená to, že žádným působením se nemohou měnit vzdálenosti mezi hmotnými body. Takový systém tedy není možné deformovat.
18
Dokonale tuhé těleso II
Ani translační ani rotační silové působení na dokonale tuhé těleso se nezmění když: do libovolného bodu umístíme dvě síly stejně velké, ale opačně orientované. libovolnou sílu posuneme kamkoli po přímce jejího působení. na libovolnou přímku umístíme dvě síly stejně velké, ale opačně orientované.
19
Dokonale tuhé těleso III
Účinek síly, která působí v přímce procházející těžištěm, je čistě translační Účinek dvojice stejných, opačně orientovaných sil, působících v libovolných paralelních přímkách, je čistě rotační.
20
Dokonale tuhé těleso IV Steinerova věta I
U tuhých těles je výhodné popsat rozložení hmotnosti pomocí momentu setrvačnosti : J = mi r2i Z vlastnosti těžistě plyne Steinerova věta : kde Ja je moment setrvačnosti vůči ose, vzdálené a od těžiště a Jt je m.s. vůči ose procházející těžištěm, která je s ní paralelní
21
*Dokonale tuhé těleso V Steinerova věta II
Polohový vektor i-tého bodu lze vyjádřit pomocí jeho polohového vektoru v těžišťové soustavě : Tedy : Prostřední člen je z vlastnosti těžiště roven nule.
22
Dokonale tuhé těleso VI Steinerova věta III
Je patrné, že ze všech paralelních os je moment setrvačnosti nejmenší vůči ose procházející těžištěm. Je-li výslednice všech momentů sil, které působí na DTT nulová, rotuje těleso rovnoměrně (s konstantní ) kolem osy, procházející těžištěm nebo je v klidu.
23
Dokonale tuhé těleso VII Statika
Je-li výslednice všech sil, působících na DTT so nulová, pohybuje se těleso rovnoměrně nebo je v klidu. Hledáním podmínek, za kterých zůstávají tělesa v klidu se zabývá statika. Obecně musí být vykompenzovány všechny síly a všechny momenty sil, a to každá jejich složka.
24
Dokonale tuhé těleso VIII Kinetická energie
Lze ukázat, že celková kinetická energie dokonale tuhého tělesa se obecně skládá z translační a rotační složky:
25
Dokonale tuhé těleso IX hmotnost ~ moment setrvačnosti
Ve vztazích pro rotační pohyb vystupuje moment setrvačnosti na místech, kde v analogických vztazích pro pohyb translační vystupuje hmotnost:
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.