Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
ZveřejnilDenis Dostál
1
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Úhly v kružnici Středový a obvodový úhel (vztah mezi nimi) Autor obrázku © Mgr. Radomír Macháň
2
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Úhly v kružnici (opakování) - jsou úhly příslušné k oblouku kružnice. Středový úhel, tzn. úhel s vrcholem ve středu kružnice a rameny procházejícími krajními body oblouku AB.
3
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Úhly v kružnici (opakování) - jsou úhly příslušné k oblouku kružnice. Kolik středových úhlů k danému oblouku existuje? Ano, samozřejmě, že jen jeden, vždyť existuje jen jeden střed kružnice.
4
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Středové úhly (opakování) - úhly s vrcholem ve středu kružnice a rameny procházejícími krajními body oblouku AB. Středový úhel konvexní (menší než 180°) Středový úhel nekonvexní, konkávní (větší než 180°)
5
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Úhly v kružnici (opakování) - jsou úhly příslušné k oblouku kružnice. Obvodový úhel, tzn. úhel s vrcholem na obvodu kružnice a rameny procházejícími krajními body oblouku AB.
6
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Obvodové úhly (opakování) - úhly s vrcholem na obvodu kružnice a rameny procházejícími krajními body oblouku AB. K danému oblouku existuje nekonečně mnoho obvodových úhlů. Všechny obvodové úhly k danému oblouku jsou shodné.
7
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Vztah mezi středovým a obvodovým úhlem Pokusíme se prozkoumat, zda mezi středovým a obvodovým úhlem daného oblouku neexistuje nějaký matematický vztah.
8
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Vztah mezi středovým a obvodovým úhlem Pokusíme se prozkoumat, zda mezi středovým a obvodovým úhlem daného oblouku neexistuje nějaký matematický vztah.
9
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Vztah mezi středovým a obvodovým úhlem Pokusíme se prozkoumat, zda mezi středovým a obvodovým úhlem daného oblouku neexistuje nějaký matematický vztah.
10
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Vztah mezi středovým a obvodovým úhlem Pokusíme se prozkoumat, zda mezi středovým a obvodovým úhlem daného oblouku neexistuje nějaký matematický vztah. Zdá se, že bychom již mohli říci vyvozený závěr: Velikost středového úhlu je rovna dvojnásobku velikosti obvodového úhlu příslušného k témuž oblouku.
11
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Vztah mezi středovým a obvodovým úhlem Pro jistotu si vztah rozebereme ještě z jiného pohledu. Jakou velikost má tento úhel? Z čeho při určení jeho velikosti vycházíme?
12
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Vztah mezi středovým a obvodovým úhlem Pro jistotu si vztah rozebereme ještě z jiného pohledu. Jde o vedlejší úhly, jejichž součet je 180°. Z toho vyplývá …
13
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Vztah mezi středovým a obvodovým úhlem Pro jistotu si vztah rozebereme ještě z jiného pohledu. O jaký trojúhelník jde v případě ASC?
14
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Vztah mezi středovým a obvodovým úhlem Pro jistotu si vztah rozebereme ještě z jiného pohledu. Je to trojúhelník rovnoramenný, neboť jeho ramena tvoří poloměry kružnice. Co platí pro dvojici úhlů při jeho základně?
15
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Vztah mezi středovým a obvodovým úhlem Pro jistotu si vztah rozebereme ještě z jiného pohledu. Jsou shodné. Jak velké tedy budou v našem případě? Kolik stupňů mezi ně máme rozdělit? Jaký je součet všech vnitřních úhlů trojúhelníku?
16
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Vztah mezi středovým a obvodovým úhlem Pro jistotu si vztah rozebereme ještě z jiného pohledu. Součet vnitřních úhlů trojúhelníku je 180°. Na rozdělení nám tedy zbývá 100° a z toho vyplývá, že každý z úhlů při základně má 50°.
17
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Vztah mezi středovým a obvodovým úhlem Pro jistotu si vztah rozebereme ještě z jiného pohledu. Velikost středového úhlu je rovna dvojnásobku velikosti obvodového úhlu příslušného k témuž oblouku.
18
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Středové a obvodové úhly Vše, co jsme si prozatím řekli a odvodili, si můžeme ověřit i v appletu na následujícím odkazu: http://www.walter-fendt.de/m14cz/kreiswinkel_cz.htm http://www.walter-fendt.de/m14cz/kreiswinkel_cz.htm
19
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady na procvičení Určete velikost středového úhlu daného oblouku kružnice určeného obvodovým úhlem a narýsujte jej.
20
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady na procvičení Určete velikost středového úhlu daného oblouku kružnice určeného obvodovým úhlem a narýsujte jej.
21
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady na procvičení Určete velikost středového úhlu daného oblouku kružnice určeného obvodovým úhlem a narýsujte jej.
22
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady na procvičení Určete velikost středového úhlu daného oblouku kružnice určeného obvodovým úhlem a narýsujte jej.
23
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady na procvičení Určete velikost obvodového úhlu daného oblouku kružnice určeného středovým úhlem a narýsujte alespoň dva odlišné obvodové úhly.
24
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady na procvičení Určete velikost obvodového úhlu daného oblouku kružnice určeného středovým úhlem a narýsujte alespoň dva odlišné obvodové úhly.
25
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Příklady na procvičení Zvláštní případ nastává, pokud je středový úhel o velikosti 180°(přímý úhel), kdy část jeho ramen k bodům SA a SB tvoří průměr kružnice AB . Jakou velikost má obvodový úhel? Jaké jsou všechny vznikající trojúhelníky ABC? Vznikají pravoúhlé trojúhelníky. Podrobněji si tento speciální případ rozebereme příště.
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.