Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
1
Lineární algebra
2
Vektor Skalár Vektor ve fyzice Vektor v matematice
číslo bez rozměru a směru Vektor ve fyzice veličina mající velikost, směr, působiště Vektor v matematice určuje posunutí Každou uspořádanou n - tici čísel (a1,a2,…..an) nazveme n - rozměrným (aritmetickým) vektorem. Čísla a1, a2, …. an nazveme souřadnice vektoru Označení a = (a1, a2, …. an)
3
Pravidla pro počítání vektory
a = (a1, a2, …, an), b = (b1, b2, ..., bn), k R a = b (a1 = b1, a2 = b2, …. an = bn) a + b = (a1 + b1, a2 + b2, …. an + bn) k.a = (ka1, ka2, …. kan) Nulový vektor 0 = (0, 0, ..., 0) Opačný vektor -a = (-a1, -a2, …, -an)
4
Skalární součin vektorů
Skalárním součinem vektorů a = (a1,a2,…..an), b = (b1,b2,…..bn) nazýváme číslo a . b = a1.b1 + a2 .b2 + an.bn Příklad: Určete skalární součin vektorů a = (1, 2, 1), b = (1, 4, 3) a . b = = 12
5
Vektorový prostor Množinu všech uspořádaných n-tic (a1, a2, …, an) spolu s operacemi sčítání vektorů a násobení vektoru skalárem, pro něž platí řada běžně splnitelných podmínek, nazýváme n- rozměrným vektorovým prostorem. Značí se Vn= (V, S, +,*), kde V je množina vektorů, S je množina skalárů a + a * jsou operace s nimi.
6
Lineárně nezávislé vektory
Nechť a1, a2, ..., am Vn, c1 ..., cm R Vektory a1, a2, …, am jsou lineárně nezávislé když c1.a1 + c2.a2 + cm.am = 0 jen pro c1 = c2 = cm = 0 Je- li alespoň jedno z čísel ci 0, nazýváme tyto vektory lineárně závislé. Vektor b Vn se nazývá lineární kombinací vektorů a1, a2,…. am, existují-li čísla c1, …, cm taková, že platí b = c1. a cm.am.
7
Báze vektorového prostoru
Množina [a1, a2, ….ah] se nazývá báze vektorového prostoru, jsou-li její vektory lineárně nezávislé a každý ostatní vektor vektorového prostoru je jejich lineární kombinací. Hodnost (dimenze) vektorového prostoru je rovna maximálnímu počtu lineárně nezávislých vektorů, počtu vektorů v bázi..
8
Příklad báze Kanonická báze j1 = (1,0,…,0) j2 = (0,1,…,0) …
jn = (0,0,…,1) Vektory j1,…, jn jsou lineárně nezávislé.
9
Souřadnice vektoru Nechť B je = [a1, a2, ….an] je bází vektorového prostoru, pak každý vektor v = 1 a1 + 2 a2 + … + n an a koeficienty 1, 2, …, n jsou souřadnice vektoru v vzhledem k bázi B. Příklad B = [a1, a2] = [(1,0,1), (1,1,0)], v = (5,2,3) v = 3 a a2
10
Matice Maticí A typu (m, n) nazýváme strukturu reálných čísel o m řádcích a n sloupcích. Je-li m = n , mluvíme o čtvercové matici. Označujeme A [aik]. Hodnost matice A typu (m,n) je rovna počtu lineárně nezávislých řádků (nebo sloupců) matice.
11
Základní pojmy Diagonála matice Nulová matice Trojúhelníková matice
je tvořena prvky a11, a22 ,... arr , kde r = min(m,n) Nulová matice všechny prvky matice jsou nulové Trojúhelníková matice všechny prvky pod diagonálou jsou nulové Jednotková matice čtvercová matice, která má všechny prvky na diagonále rovny 1. Značíme E.
12
Operace s maticemi Nechť A, B jsou matice obě typu (m,n)
Rovnost matic A = B jsou-li téhož typu (m,n) a aik = bik Součet matic A + B = [aik+bik] Násobek matice skalárem .A = [.aik] Součin matic A typu (m, n) a B typu (n, p) je matice A.B = C =[cik] typu (m, p), kde cik je skalární součin i - tého řádku matice A a k - tého sloupce matice B
13
Elementární operace Elementární operace Součet řádků
Násobení řádků skalárem Výměna řádků Vynechání řádku
14
Inverzní matice Čtvercová matice A řádu n je regulární h = n
Čtvercová matice A řádu n je singulární h < n Nechť A je regulární čtvercová matice n - tého řádu. Matici X, pro kterou platí A.X = X.A = E, kde E je jednotková matice n - tého řádu, nazveme inverzní maticí k matici A a označíme A-1.
15
Výpočet inverzní matice
Provedeme elementární operace na matici (A|E) s cílem vytvořit z matice A matici jednotkovou, z matice E pak vznikne matice inverzní.
16
Hodnost matice Hodnost matice se nezmění
zaměníme-li pořadí řádků vynásobíme-li řádky nenulovým číslem přičteme-li k řádku lineární kombinaci řádků ostatních vynecháme-li řádek, který je lineární kombinací řádků ostatních zaměníme-li pořadí sloupců Určení hodnosti matice - matici převedeme pomocí elementárních operací na trojúhelníkový tvar
17
Soustava lineárních rovnic
a11x1 + a12x2 + a13x3 + …. + a1n xn = b1 a21x1 + a22x2 + a23x3 + …. + a2n xn = b2 … am1x1 + am2x2 + am3x3 + …. + amnxn = bm A = (aij), i =1,…,m, j=1,...,n jsou koeficienty proměnných b = (bi) i =1,…,m je sloupec pravých stran a x = (x1, x2, x3,….xn) jsou proměnné Soustavu je možno zapsat v maticovém tvaru A x = b
18
Frobeniova věta Nehomogenní soustava je řešitelná právě tehdy, když matice soustavy a rozšířená matice soustavy mají stejnou hodnost. Je-li n = h existuje právě jedno řešení Je-li n h existuje nekonečně mnoho řešení závislých na n - h parametrech
19
Gaussova eliminační metoda
Vytvoříme rozšířenou matici soustavy Matice koeficientů proměnných a vektor pravých stran Upravíme tuto matici na trojúhelníkový tvar Pomocí elementárních operací s řádky (sloupci) Elementárními úpravami dostáváme ekvivalentní soustavy rovnic – mají stejná řešení Dopočítáme proměnné x1, x2, … xn. Ve čtvercové soustavě je možno jednu proměnnou určit okamžitě, ostatní postupným dosazováním V soustavě s více proměnnými než rovnicemi položíme proměnné, které neodpovídají trojúhelníkovému tvaru soustavy, rovny nule, ostatní dopočítáme
20
Gaussova eliminační metoda
x1 + 2x2 + x3 = 3 2x1 + x2 + x3 = 6 Matice soustavy x1 + 3x2 + x3 = 2 x1 + 2x2 + x3 = 3 -3x2 - x3 = 0 Z toho x3 = 3 x2 = x1 = 2 -x3 = -3
21
Jordanova eliminační metoda
Vytvoříme rozšířenou matici soustavy Matice koeficientů proměnných a vektor pravých stran Upravíme tuto matici na diagonální tvar Na diagonále jedničky, ostatní prvky ve sloupcích rovny nule Pomocí vybraných elementárních operací s řádky (sloupci) Vybereme řídící prvek (pivot) – budoucí řídící jedničku Vybraný řídící řádek pivotem vydělíme K ostatním řádkům přičítámš vhodný násobek řídícího řádku Hodnoty proměnných x1, x2, … xn odpovídajících diagonále (bázických) jsou ve vektoru pravých stran
22
Jordanova eliminační metoda
x1 + 2x2 + x x4 = 2 2x1 + 3x2 - x3 + 2x4 = 1 4x1 + 7x2 + x = 5 x1 = x2 = 3 x3 = x4 = 0 x1 = -4 +5p - 7q x2 = 3 - 3p + 4q x3 = p x4 = q
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.