Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
1
7.3 Elektrostatické pole ve vakuu Potenciál, napětí, elektrický dipól
Elektrostatika 7.1 Elektrický náboj 7.2 Coulombův zákon 7.3 Elektrostatické pole ve vakuu Potenciál, napětí, elektrický dipól 7.4 Elektrické pole v dielektrikum Polarizace, kondenzátory 1 Fyzika I-2014, přednáška 9
2
časově neproměnné elektrické pole 7.1. Bodový náboj
7. Elektrostatika časově neproměnné elektrické pole 7.1. Bodový náboj elektrický náboj q, Q spojený s nositelem dvojího druhu > 0, < 0 vlastnost subatomárních částic jedn. náboje: C (coulomb) zákon zachování, invariantnost, kvantování nabitá, nenabitá tělesa, polarizovaná tělesa bodový náboj – aproximace, kdy není důležité rozložení náboje v tělese: těleso, jehož rozměry jsou zanedbatelné a které nese náboj │Q│= n e, e = 1, C n … celé číslo Fyzika I-2014, přednáška 9
3
souhlasné náboje: 𝑄 1 𝑄 2 >0 – odpudivá síla, 𝐹 21 ↑↑ 𝑟 21
7.2 Coulombův zákon souhlasné náboje: 𝑄 1 𝑄 2 >0 – odpudivá síla, 𝐹 21 ↑↑ 𝑟 21 nesouhlasné náboje: 𝑄 1 𝑄 2 <0 – přitažlivá síla, 𝐹 21 ↑↓ 𝑟 21 𝑟 21 = 𝑟 𝑟 1 - poloh. vektor náboje Q2 vzhledem ke Q1 𝐹 21 =𝑘 𝑄 1 𝑄 2 𝑟 𝑟 𝑟 21 𝑘= 1 4𝜋 𝜀 0 Coulombův zákon, 𝜀 0 je permitivita vakua 𝜀 0 =8,85∙ 10 −12 C 2 m −2 N −1 je konst. úměrnosti 𝐹 21 = − 𝐹 12 𝐹 21 =𝑘 𝑄 1 𝑄 2 𝑟 12 2 Fyzika I-2014, přednáška 9
4
soustava více nábojů – síly se vektorově sčítají
Př. n nábojů Q1, Q2, …, Qn působí na náboj Q0 𝐹 = 𝑖=1 𝑛 𝐹 0𝑖 = 𝑖=1 𝑛 𝑘 𝑄 𝑖 𝑄 0 𝑟 0𝑖 𝑟 0𝑖 𝑟 0𝑖 Fyzika I-2014, přednáška 9
5
Q0 – „testovací náboj“, nevytváří pole
7.3.Intenzita elektrostatického pole elektrostatické pole - silové pole v okolí nábojů silové působení na jiné náboje, např. na náboj Q0: Intenzita el. pole: Def. a) Pole bodového náboje číselně rovna síle působící na jednotkový náboj Q0 – „testovací náboj“, nevytváří pole jednotka: N/C, V/m 𝐸 = 𝐹 𝑄 0 𝐸 =𝑘 𝑄 𝑟 2 𝑟 𝑟 intenzita pole bod. náboje Q velikost stejná na povrchu koule, směr radiální siločary – tečna v každém bodě je 𝐸 není definováno pro 𝑟 =0 E(r/2) = ?, E(2r) = ? zdroj pole Q < 0 → 𝐸 opačný směr Fyzika I-2014, přednáška 9
6
b) Intenzita pole soustavy bodových nábojů:
Fyzika I-2014, přednáška 9
7
Pole elektrického dipólu
elektrický dipól – tvořen dvěma bod. náboji + Q a – Q, které jsou v konstantní vzdálenosti l elektrický dipólový moment vektor, směr od – Q k +Q 𝑝=𝑄ℓ pro r >> l : Q1 Q2 │Q1 │ = │ Q2 │ Fyzika I-2014, přednáška 9
8
c) Pole spojitě rozložených nábojů
aproximace spojitě rozložených nábojů (na křivce, v ploše, v prostoru) např. nabitá deska: plošná hustota náboje s Fyzika I-2014, přednáška 9
9
s >0 s <0 Homogenní elektrostatické pole
intenzita všude stejnou velikost a stejný směr pole v okolí rozlehlé desky („nekonečné“) nabité s plošnou hustotou s [C/m2] odhad: s >0 dvě rozlehlé desky vzdálené d nabité s plošnou hustotou +s a – s: s <0 𝐸 (−) = 𝜎 2 𝜀 0 𝐸= 𝜎 𝜀 0 Fyzika I-2014, přednáška 9
10
Potenciál, napětí práce sil elektrostatického pole o intenzitě E při přenesení náboje Q elektrické pole je konzervativní – lze zavést potenciální energii potenciál V – potenciální energie vztažena na jednot. náboj napětí UAB – rozdíl potenciálů 𝑊 𝐴→𝐵 =𝑄 𝐴 𝐵 𝐸 ∙𝑑 𝑟 𝑉(𝑟)= 𝑟 𝑉=0 𝐸 ∙𝑑 𝑟 jedn. V (volt) jedn. intenzity Vm-1 𝑉(𝑟)= 𝐸 𝑝 (𝑟) 𝑄 𝑈 𝐴𝐵 = 𝑉 𝐴 − 𝑉 𝐵 𝑈 𝐴𝐵 = 𝐴 𝐵 𝐸 ∙𝑑 𝑟
11
potenciál pole bodového náboje
práce při přenesení náboje Q0 v poli náboje Q tabule potenciál pole bodového náboje Q : b) potenciál soustavy bod. nábojů 𝑉 𝑟 =𝑘 𝑄 𝑟 V > 0 pro Q > 0 při přenesení náboje Q > 0 do nekonečna pole koná kladnou práci V < 0 pro Q < 0 kladnou práci konají vnější síly, pole koná zápornou práci skalár, nepřímo úměrný vzdálenosti od náboje není definován v místě bodového náboje tj. r = 0 ekvipotenciální plocha E ekvipotenciální plochu (platí obecně) potenciální energie soustavy bod. náb. 𝑉= 𝑖=1 𝑛 𝑉 𝑖 = 𝑖=1 𝑛 𝑘 𝑄 𝑖 𝑟 𝑖 𝐸 𝑝 = 𝑑𝑣𝑜𝑗𝑖𝑐𝑒 𝑘 𝑄 𝑖 𝑄 𝑗 𝑟 𝑖𝑗
12
c) napětí mezi deskami +s a – s vzdálenými d tabule
Pohyb náboje v homogenním elektrostatickém poli - lineární urychlovač náboj Q o hmot. m vstoupí do hom. pole rychlostí 𝑣 0 rovnoběžnou s intensitou 𝐸 : Rychlost poté, co projde potenciálním rozdílem U, v0 = 0 tabule : 𝑈=𝐸𝑑 d x 𝑣= 2𝑄𝑈 𝑚 = 2𝑄𝐸𝑑 𝑚 Fyzika I-2014, přednáška 9
13
Elektrický dipól v homogenním poli
Cíl: pohybový stav el. dipólu o dipólovém momentu p výsledná síla → není translační pohyb jen rotační: moment síly tabule potenciální energie 𝐹 = 0 𝑟 𝑀 = 𝑝 × 𝐸 𝐸 𝑝 (𝛼)=− 𝑝 ∙ 𝐸 Fyzika I-2014, přednáška 9
14
Elektrický dipól v homogenním poli
významné polohy dipólu v homogenní poli el. dipól se snaží natočit do stavu stabilní rovnováhy 𝐸 𝑝 (𝛼)=− 𝑝 ∙ 𝐸 𝑀 = 𝑝 × 𝐸 𝐸 𝑝 𝛼 =−𝑝𝐸 cos 𝛼 𝑀=𝑝𝐸 sin 𝛼 14 Fyzika I-2014, přednáška 9
15
- p(molekuly) ≠0 7.4 Elektrostatické pole v látkách
vodič – těleso nebo prostředí s volně pohyblivými náboji dielektrikum (izolátor) – není vodič ani vakuum nepolární je-li E = 0 Vm-1, p(molekuly) = 0 je-li E ≠ 0 Vm-1, p(molekuly) ≠ 0 polární p(molekuly) ≠0 pol. molekuly: p~10-30 Cm vedl. jedn. v chemii (debye): 1D=3, Cm + - bez vnějšího pole je objem dielektrika nepolarizován (dipóly - molekuly polárního diel. náhodně orientovány díky tepl. pohybu) ve vnějším elektrickém poli se dielektrikum polarizuje Fyzika I-2014, přednáška 9
16
er - relativní permitivita (bezrozměrná)
polarizace dielektrika vázaný náboj (polarizační) – vázaný náboj v dielektriku volný náboj pole v dielektriku - superpozice pole volného a vázaného náboje: permitivita prostředí 𝜀=𝜀 𝑟 𝜀 0 vztahy platné ve vakuu → vztahy pro dielektrikum: e0 → e např. intenzita pole bod. náboje v dielektriku tabule 𝐸= 𝐸 0 − 𝐸 𝑃 = 𝐸 0 𝜀 𝑟 er - relativní permitivita (bezrozměrná) pozn. rozměr 𝜀0 za D.cv. (z. Coulomb. zák.) Fyzika I-2014, přednáška 9
17
Elektrostatické pole vodičů
uvnitř vodičů jsou nosiče elektrických nábojů volně pohyblivé, lze na ně přivést náboj, jsou-li ze všech stran izolované Př. kovy, roztoky elektrolytů, ionizované plyny V elektrostatice – náboj se nepohybuje, je dosaženo rovnováhy Tvrzení: uvnitř nab. vod. musí být E = 0 (jestliže není splněno – pohyb = spor) Důsledek: a) uvnitř vodiče neexistují makroskopické náboje b) náboj v nabitém vodiči na povrchu Intenzita na povrchu vodiče: Vektor intenzity elektrostat. pole je kolmý k povrchu vodiče, povrch vod. je ekvipotenciální plochou obecný směr - pohyb v povrchu = spor → 17 Fyzika I-2014, přednáška 9
18
Kondenzátor dva vodiče nabité náboji +Q a –Q mezi nimiž je napětí U Def. kapacity kondenzátoru jed. F (farad) kapacita deskového kondenzátoru: ~ S ~ 1/d ~ er kapacita vakuového kondenzátoru: kondenzátor s dielektrikem C = er C0 řazení kondenzátorů sériové paralelní 𝐶= 𝑄 𝑈 S… plocha každé z desek, s… plošná hustota náboje, d…vzdál. desek, náboj na deskách +Q, -Q tabule 𝐶= 𝜀 0 𝜀 𝑟 𝑆 𝑑 𝐶 0 = 𝜀 0 𝑆 𝑑
19
Energie elektrostatického pole
odvodíme pro případ pole mezi deskami kondenzátoru o kapacitě C tabule objemová hustota energie w platí obecně pro hustotu energie elektrického pole o intenzitě E 𝑊= 1 2 𝐶 𝑈 2 𝑤= 1 2 𝜀 𝑟 𝜀 0 𝐸 2 19 Fyzika I-2014, přednáška 9
20
ve středu 23.4. 2014 se přednáška z FI koná v posluchárně BIII
Připomenutí: ve středu se přednáška z FI koná v posluchárně BIII 20 Fyzika I-2014, přednáška 9
21
8. Stejnosměrné obvody 8.1 Elektrický proud elektrodynamika a) Makroskopický popis elektrický proud – uspořádaný pohyb elektrických nábojů, značíme i (t), I Def: el. proud je číselně náboj prošlý průřezem vodiče za jednotku času jedn. proudu A (ampér) jedn. náboje C=A s konvenčně směr proudu ≡ směr pohybu kladných nábojů
22
8 Stejnosměrné obvody 22 Fyzika I-2014, přednáška 9
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.