Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
ZveřejnilLucie Pokorná
1
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Konstrukce trojúhelníku Známe-li dvě strany a těžnici k jedné z nich
2
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Zopakujme si, co víme o těžnicích trojúhelníku: Těžnice trojúhelníku je úsečka spojující vrchol trojúhelníku se středem jeho protilehlé strany; vzdálenost vrcholu a středu protější (příslušné) strany. Máme tři strany a tři vrcholy – tudíž i tři těžnice. Značíme je v závislosti na označení příslušných vrcholů a stran – t a, t b, t c. Těžnice se protínají v jednom bodě - těžišti.
3
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Trojúhelník – těžnice trojúhelníku Těžiště dělí těžnice v poměru 2:1 tak, že delší úsek těžnice leží vždy u vrcholu. To znamená, že úsek těžnice od vrcholu do těžiště tvoří vždy 2/3 celkové délky těžnice. 2/3 1/3 2/3 1/3 2/3 1/3
4
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Náčrt: A nyní již přikročíme ke konstrukci. Sestrojte trojúhelník ABC, ve kterém c = 8 cm, a = 5 cm, t c = 6 cm. S c a tctc
5
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Rozbor: Jak sestrojíme bod C? Co o něm víme? Víme, že jeho vzdálenost od středu strany c je 6 cm (t c = 6 cm). Kde se tedy může nacházet bod splňující danou podmínku? Co je množinou všech bodů, jejichž vzdálenost od středu strany c je 6 cm? Je to kružnice se středem ve středu strany c a poloměrem o velikosti t c, tj. 6 cm. tctc S tctc tctc tctc tctc tctc k C1C1 C2C2 C3C3 C4C4 C5C5 C6C6
6
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Začneme jako vždy zadanou stranou, v tomto případě stranou c. Náčrt a rozbor: Následuje použití zadané těžnice – jak jsme na předchozím snímku vyvodili, sestrojíme kružnici se středem ve středu strany c a s poloměrem o velikosti těžnice t c. Jako poslední použijeme ze zadání stranu a. p o1o1 S k l
7
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. 1. AB; AB =c = 8 cm Zápis a konstrukce: 2. S; S AB, AS = SB 4. l; l(B; a=5 cm) 5. C; C k l 3. k; k(S; t c = 6 cm) p o1o1 S k l A B C 6. Trojúhelník ABC
8
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Výsledný trojúhelník Úloha má jedno řešení. (v polorovině určené úsečkou AB a bodem C) Konstrukci proměříme, zda odpovídá zadání, a trojúhelník vytáhneme silněji. A takto vypadá celá konstrukce.
9
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Pár příkladů k procvičení – příklad č. 1 Sestrojte trojúhelník ABC, jestliže: c = 3 cm, b = 6,5 cm, t c = 55 mm (Pozor na jednotky!)
10
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Pár příkladů k procvičení – příklad č. 2 Sestrojte trojúhelník ABC, jestliže: a = 5 cm, b = 5 cm, t a = 7 cm
11
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Pár příkladů k procvičení – příklad č. 3 Sestrojte trojúhelník ABC, jestliže: b = 5 cm, t b = 2 cm, a = 4 cm
12
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Dobrá rada na závěr: Pamatuj si! Je-li při konstrukci trojúhelníku zadána těžnice, použijeme ji k sestrojení kružnice se středem ve středu příslušné strany a poloměrem o velikosti dané těžnice. Například: Je-li dána strana b a těžnice t b, začneme konstrukci stranou b a pokračujeme kružnicí se středem ve středu strany b a poloměrem o velikosti t b.
13
Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Přeji přesnou ruku při rýsování!
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.