Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
1
Dýchací systém Všeobecné lékařství
2
Funkce respiračního systému
Úzká spolupráce se srdcem a krví ve snaze extrahovat kyslík z vnějšího prostředí a zbavovat se nežádoucích plynů, především CO2. Plíce fungují jako výkonné měchy, které vypuzují použitý vzduch, přinášejí čerstvý vzduch a míchají jej se vzduchem, který v nich zůstal. Pro výměnu plynů musejí mít plíce dostatečný povrch. Stěny alveolů musejí klást minimální odpor difúzi plynů. Funkce plic tedy vyžadují širokou expozici plicního povrchu zevnímu prostředí. Tento povrch může být poškozen prachy, plyny a infekčními agens. Ochrana plic proti těmto vlivům je prioritní a dosahuje se jí kombinací strukturálních a imunologických obranných sil.
3
Trachea, bronchy a bronchioly
Trachea je dlouhá cm. Lehce posunuta k pravé straně, v místě cariny se dělí na hlavní pravý a levý bronchus. Carina leží pod junkcí manubrium sterni a chrupavkou druhého pravého žebra. Pravý bronchus probíhá vertikálněji než levý, takže inhalované částice se dostávají spíše do něho. Pravý hlavní bronchus se dělí na bronchy horního a intermediálního laloku. Bronchus intermediálního laloku se dále dělí na bronchy středního a dolního laloku. Nalevo se hlavní bronchus dělí na bronchy horního a dolního laloku. Každý lobární bronchus se dále dělí na segmentální a subsegmentální bronchy. Celkem dochází mezi tracheou a alveoly k celkem 25 větvením.
4
Během prvních 7 větvení mají bronchy:
Stěnu skládající se z chupavky a hladkého svalstva Epiteliální řasinkový epitel Žlázky sekretující hlen Endokrinní buňky – Kulchitského nebo APUD (amine precursor and uptake decarboxylation), které obsahují serotonin
5
V dalších 16-18 větveních bronchy:
Neobsahují chrupavky ani svalovou vrstvu a jsou stále tenčí Jednu vrstvu buněk řasinkového epitelu s jen velmi malým počtem pohárkových buněk Granulované Clara buňky, které produkují látku podobnou surfaktantu.
6
Struktura plíce Plíce jsou rozděleny do laloků invaginacemi pleury, které jsou často inkompletní. Pravá plíce je rozdělena do 3 laloků, levá do dvou. Každý lalok je dále rozdělen do bronchopulmonárních segmentů prostřednictvím fibrózních sept, které vycházejí z pleurálního povrchu a zasahují dovitř do laloků. Každá segment má vlastní segmentální bronchus. Bronchopulmonární segment je dále rozdělen do individuálních lalůčků s průměrem 1 cm.Ryto lalůčky mají pyramidální tvar s apexem směrujícím k příslušnému bronchiolu. V každém lalůčku zásobuje terminální bronchus acinus a dalším dělěním bronchiolů se dostáváme až k alveolům.
7
Alveoly Bronchioly se finálně v acinech rozvětvují na respirační bronchioly, které mají alveoly. Každý respirační bronchiolus zásobuje cca 200 alveolů prostřednictvím alveolárních duktů.
9
Alveoly 300 miliónů v každé plíci. Jejich celkový povrch 40-80 m2.
Epiteliální výstelka se skládá zejména z pneumocytů I. typu. Ty mají extrémně ztenčenou cytoplasmu, takže představují jen velmi tenkou bariéru pro výměnu plynů. Jsou odvezeny z pneumocytů II. typu. Pneumocyty II. typu jsou o něco početnější, ale pokrývají menší část epiteliální výstelky. Obecně se vyskytují na okrajích alveoly a obsahují jemné lamerální vakuoly, které jsou zdrojem surfaktantu. Pneumocyty II. typu jsou spojeny tight junctions, které limitují pohyb tekutin v a z alveolu. Makrofágy. Kohnovy póry jsou otvory ve stěnách alveolů, které umožńují komunikaci mezi sousedními alveoly.
11
Alveolární stabilita Povrchové napětí alveolů vede k jejich tendenci kolabovat. Pneumocyty typu II sekretují dipalmitoyl lecithin surfaktant, který redukuje povrchové napětí. Syndromy dechové tísně
12
Obranné mechanismy respiračního traktu
I. Fyzikální a fyziologické Zvlhčování Odstraňování částic 90% nad 10 μm v průměru odstraněno již v nosní dutině, včetně pylových zrn >20 um. 5-10 um zachyceny v carině. menší než1 um není možno odstranit 1-5 micron range- dýchací cesty Vypuzování částic kašlem, kýcháním. Sekretem respiračního traktu
13
Řasinkový epitel Představuje důležitý obranný mechanismus.
Každá buňka obsahuje cca 200 řasinek, které se pohybují při frekvenci 1000/ min v organizovaných vlnách kontrakce. Každá řasinka se skládá z 9 periferních částí a 2 vnitřních longitudinálních fibril, rozmístěných v cytoplasmatické matrix. Linky nexinu se připojují k periferním párům. Dyneinová raménka skládající se z ATPázového proteinu se projikují směrem k sousedním párům. Ohýbání se řasinky je umožněno klouzavým pohybem mezi sousedními fibrilami, poháněným ATP-dependentní smykovou silou vyvinutou v dyneinových raméncích. Nepřítomnost těchto ramének vede k nepohyblivosti řasinek. Hlen, který obsahuje makrofágy, buněčný detrit, inhalované částice a bakterie, je řasinkami posunován směrem k laryngu rychlostí 1,5 cm/min („mukociliární eskalátor“).
14
Řasinkový epitel
15
Obranné mechanismy na epiteliálním povrchu
16
Humorální a celulární mechanismy
Nespecifické solubilní faktory α-Antitrypsin (α-antiproteáza) inhibuje chymotrypsin a trypsin a neutralizuje proteázy a elastázy. Lysozym –granulocytární enzym s baktericidními vlastnostmi. Laktoferrin je syntetizován v epitelu a v neutrofilních granulocytech a má bactericidní vlastnosti. Interferon je produkován mnohými buňkami při virových infekcích. Moduluje imunitní reakci ve prospěch celulární imunity (Aktivace Th1 cesty). Komplement Surfaktantový protein A (SPA) je jeden ze čtyřech surfaktantových proteinů, který opsonizuje bakterie a podporuje tak jejich fagocytózu. Defensiny jsou baktericidní peptidy v azurofilních granulech neutrofilů.
17
Celulární obranné mechanismy
Lymfocyty Rozptýleny v dýchacích cestách. Senzitizované lymfoycyty se účastní v místních obranných reakcích prostřednictvím diferenciace do plasmatických buněk sekretujících IgA. IgG a IgE v nízkých koncentracích v dýchacích sekretech.
18
Celulární obranné mechanismy
Plicní alveolární makrofágy jsou odvozeny z dřeňových prekurzorů a dostávají se do plic krevním oběhem. Fagocytují a jsou následně odstraněny mukociliárním eskalátorem, lymfatickými a krevními cestami. Dominantní buňky v dýchacích cestách: představují 90% všech buněk získaných v bronchoalveolární laváži. Fungují především jako vychytávači, nejsou ideální pro prezentaci antigenů Dendritické buňky vytvářejí v dýchacích cestách síť a jsou zřejmě klíčovými buňkami pro prezentaci antigenů.
19
Pleura Vrstva pojivové tkáně pokrytá jednoduchým dlaždicovým epitelem.
Viscerální pleura pokrývá povrch plic, linie interlobárních fisur a v hilech se spojuje s parietální pleurou, která vystýlá vnitřek hrudníku. V hilech pokračuje viscerální pleura podél větvícího se bronchiálního stromu, pak se obrací a připojuje se k parietální pleuře. Malé množství tekutiny mezi oběma umožňuje skluzný pohyb.
20
Bránice Bránice je kryta parietální pleurou a peritoneem.
Její svalová vlákna se upínají na spodní žebra a spojují se do centrální šlachy. Inervace je separátní pro obě strany bránice (n. frenicus). 50% svalových vláken je typu s pomalým záškubem s nízkou glykolytickou kapacitou; jsou relativně odolné vůči únavě.
21
Cévní zásobení plic Funkční a nutriční oběh.
Arterie se dělí a postupují podél bronchů. Arterioly doprovázející respirační bronchioly mají tenkou stěnu a obsahují slabou vrstvu svaloviny. Venuly odvádějí krev z laterálních částí lobulů, zahýbají centrálně do interlobulárních a intersegmentálních sept, případně se spojují, a tvoří 4 hlavní plicní vény. Bronchiální cirkulace je z descendentní aorty. Bronchiální arterie zásobují tkáň až k respiračním bronchiolům. Bronchiální vény ústí do pulmonárních vén, čímž vytvářejí část fyziologického shuntu u zdravých jedninců. Lymfatické cesty leží v potenciálním intersticiálním protoru mezi alveolárními buňkami a kapilárním endotelem plicních arteriol. Tracheobronchiální lymfatické uzliny jsou umístěny v 5 hlavních skupinách: paratracheální horní tracheobronchiální subcarinální bronchopulmonální pulmonální.
22
Nervové zásobení plic Není zcela pochopeno.
Parasympatická (z n. vagus) a sympatická inervace tvoří plexus a jeho větve doprovázejí pulmonální arterie a větvící se bronchiální strom. Hladká svalovina stěn bronchů je inervována n. vagus, zejména typem NANC (non-adrenergic non-cholinergic). Neurotransmitery jsou peptidy a puriny. Tři typy muskarinových receptorů: M1 receptory na parasympatických gangliích M2 receptory na terminálách cholinergních nervů M3 receptory na hladkých svalových buňkách Parietální pleura inervována z nn. intercostales a n. frenicus, viscerální pleura je bez inervace.
23
Dýchání Plicní ventilaci je možno popsat ze dvou hledisek:
Jako mechanický proces inspirace a exspirace Jako řízení respirace na úroveň adekvátní metabolickým potřebám.
24
Plicní ventilace jako mechanický proces
Inspirium je aktivní proces, daný sestupem bránice a pohybem žeber nahoru a do stran vlivem práce interkostálních svalů. U odpočívajících zdravých osob je bránice odpovědná za větší část inspiria. Respirační svaly jsou odolnější vůči zátěži než jiné svaly. Svalová slabost se může projevit u neurologických a svalových onemocněních a také během pokročilých fází respiračního selhání. Inspirace proti zvýšenému odporu může vyžadovat zapojení přídatných dechových svalů (m. sternocleidomastoideus, mm. scaleni). Exspirium je pasivní proces v důsledku postupného snižování kontrakce interkostálních svalů, což umožní plicím kolabovat na základě jejich přirozené elasticity. Usilovná exspirace se také děje za pomoci přídatných svalů, především břišních, které pomáhají zvednout bránici.
25
Plicní ventilace jako mechanický proces
Plíce mají přirozenou elasticitu, což je vede k tendenci kolabovat od stěny hrudníku, což vytváří podtlak v pleurálním prostoru. Tato retrakční sílá závisí na objemu plic: při vyšším objemu plic se plíce stahuje více a vytváří se vyšší negativní intrapleurální tlak. Compliance plic vyjadřuje vztah mezi retrakční silou a objemem plic. Je definována jako změna objemu plic způsobená jednotkovou změnou intrapleurálního (transpulmonárního) tlaku (l/kPa). Na konci klidného exspiria je retrakční síla plic vyrovnávána tendencí hrudní stěny rozepnout se ven. V tuto chvíli jsou respirační svaly relaxovány a plíce mají objem funkční reziduální kapacity (FRC). Nemoci, které ovlivňují hybnost hrudní stěny a bránice, mohou mít proto velký vliv na ventilaci (spondylitis, kyfoskoliosis, neuropatie, poškození n. frenicus a myastenia gravis.
27
Řízení respirace Koordinované respirační pohyby z neuronů v retikulární hmotě mozkového kmene, tzv. respiračního centra. Tyto výboje z respiračního centra cestují via n. frenicus a nn. intercostales k muskulatuře v respiračním traktu. Parciální tlaky O2 a CO2 v arteriální krvi jsou přesně regulovány: Při průtoku krve plicemi 5 L/min se přináší do tkání 11 mmol/min (250 mL/min) kyslíku. Při ventilaci 6 L/min se odvádí z těla 9 mmol/min (200 mL/min) CO2. Normální parciální tlak kyslíku v arteriální krvi (Pao2) je kPa (83 a 98 mmHg). Normální parciální tlak CO2 v arteriální krvi (Paco2) je 4,8- 6,0 kPa (36-45 mmHg).
28
Řízení respirace Ventilace je řízena kombinací neurogenních a chemických faktorů. Dušnost v závislosti na fyzické aktivitě je normální, pokud není stupeň této aktivity vyvolávající dušnost velmi nízký. Regulace vedoucí k dušnosti nejsou zcela známy. Dušnost je vnímána v důsledku: Změn v objemu plic Senzory ve svalech hrudníku, zaznamenávající změny délky svalových fibril. Tenze vyvíjené ve stahujících se svalech. Tuto kvalitu je možno vnímat prostřednictvím Golgiho tělísek ve šlachách. Centrální percepce zvýšené námahy
30
Chemické a neurogenní faktory při řízení ventilace
Nejsilnějším stimulujícím faktorem pro ventilaci je nárůst Paco2, který zvyšuje [H+] v cerebrospinálním moku. Senzitivita na tuto stimulaci může být oslabena u COPD. U těchto pacientů je hlavním stimulačním momentem hypoxémie; léčení kyslíkem může u těchto pacientů snížit respirační aktivitu a povede k dalšímu nárůstu Paco2. Nárůst [H+] (např. diabetická ketoacidóza) zvýší ventilaci s poklesem Paco2 jako kompenzačním mechanismem metabolické acidózy (hluboké Kussmaulovo dýchání).
31
Ventilace Proud vzduchu je největší v trachey a progresivně klesá směrem k periferii (protože rychlost proudu vzduchu záleží na poměru proudu k ploše průsvitu. V terminálních dýchacích cestách se průtok plynů děje výhradně difúzí. Odpor dýchacích cest je velmi malý (0,1-0,2 kPa/L v normálních plicích), postupně se zvyšuje od nejmenších k největším průměrům dýchacích cest. Dýchací cesty expandují při vyšším objemu plic. Při plném nádechu (total lung capacity, TLC) mají o 30-40% větší kalibr než při plném výdechu (residual volume, RV).
32
Řízení tonusu dýchacích cest
Pod kontrolou autonomního NS. Bronchomotorický tonus je udržován vagovými eferentními nervy. Adrenoceptory na povrchu bronchiálních svalů reagují na cirkulující katecholaminy; přímá sympatická inervace neprokázána Cirkadiánní rytmus tonusu dýchacích cest, amplituda ve 04:00 a minimum odpoledne. Tonus se může rychle zvýšit při inhalaci stimulů ovlivňujících nervová zakončení v epitelu, což iniciuje reflexní bronchokonstrikci via n. vagus (kouření, dusící plyny a studený vzduch; odpovídavost na tyto stimuly se zvyšuje při infekcích dýchacího traktu).
33
Proudění vzduchu Pohyb vzduchu přes dýchací cesty vyplývá z rozdílu mezi tlakem v alveolech a atmosférickým tlakem; pozitivní alveolární tlak se vzniká při exspiraci a negativní při inspiraci. Při klidném dýchání subatmosférický pleurální tlak v průběhu dýchání lehce dilatuje dýchací cesty. Při vyšším exspiračním úsilí (kašel), kdy dochází ke kompresi hlavních dýchacích cest pozitivním pleurálním tlakem přes 10 kPa, se dýchací cesty kompletně neuzavírají, protože se zároveň zvyšuje alveolární tlak. Alveolární tlak PALV = elastický „recoil“ tlak plic (PEL)+ pleurální tlak (PPL)
34
Proudění vzduchu Při pauze v dýchání, kdy žádný vzduch neproudí, je tendence plic kolabovat (pozitivní recoil tlak) přesně balancován ekvivalentním negativním pleurálním tlakem. Jak se šíří proud vzduchu od alveolů do úst, dochází k poklesu tlaku v důsledku odporu proti průtoku. Při forsírované exspiraci dochází k nárůstu jak alveolárního, tak intrapleurálního tlaku. Mezi alveolem a ústy se objeví bod, kdy tlak v dýchacích cestach a intrapleurální tlak se vyrovnají, což povede k okamžité kompresi dýchacích cest. Tato komprese bude jen dočasná, protože bude mít za následek nárůst tlaku v dýchacích cestách. Tendence k vibracím v tomto bodu „dynamické komprese!
36
K předchozímu obrázku: Diagramy ventilačních sil
(a) V klidu při funkční reziduální kapacitě. (b) Během forsírované exspirace u zdravých osob (c) Během forsírované exspirace u pacientů s COPD. Respirační systém je prezentován jako píst s jedním alveolem a s kolabovatelnou částí dýchacích cest v pístové dráze. C, kompresní bod; PALV, alveolární tlak; PEL, elastický „recoil“ tlak; PPL, pleurální tlak.
37
Diagramy ventilačních sil
Elastický recoil tlak se snižuje při poklesu objemu plic a „kolapsový bod“ se pohybuje dopředu (obrázek C) (tj. směrem k menším dýchacím cestám). Při patologické ztrátě tohoto tlaku (COPD) se „kolapsový bod“ posunuje ještě více dopředu a pacienty je možno vidět, jak se snaží špulit rty ve snaze zvýšit tlak v dýchacích cestách, aby nedocházelo k jejich kolapsu.
38
Průtokově objemové smyčky
Vztahy mezi maximálními průtokovými rychlostmi a a inspirací a exspirací j možno ukázat na smyčkách maximálního průtoku-objemu (MFV). Obrázek (a) –normální subjekt. Průtokové limity nejsou zjevné, protože maximálních průtokových rychlostí se zřídka dosahuje i při velmi usilovném cvičení. U pacientů s COPD se objevují limity v exspiračním průtoku, někdy dokonce v klidových podmínkách (b)). Ke zvýšení ventilace musí tito pacienti dýchat na vysoké objemy a musejí získat delší čas k exspiriu zvýšením průtokových rychlostí během inspiria, při němž jsou průtokové limity menší. Proto mají tito pacienti prodloužené exspirium. FEV1/FIV1 je vždy pod 1 (kromě případu, kdy tumor tlačí na tracheu)
40
Maximální průtokově objemové smyčky
(a) u normální osoby (b) u pacienta se závažným omezením průtoků vzduchu v dýchacích cestách. Průtokově objemové smyčky během dýchání v klidu (startující z funkční reziduální kapacity (FRC)) a během cvičení. Nejvyšších rychlostí průtoku je dosaženo, když forsírovaná exspirace začíná z celkové plicní kapacity (TLC) a reprezentuje peak expiratory flow rate (PEFR). Protože vzduch je vytlačován z plic tak, že průtok klesá, až žádný další vzduch nemůže být vypuzen, rozlišujeme reziduální objem (RV). Protože průtok během inspiria je závislý jen na úsilí, tvar maximální flow-volumové smyčky je velmi rozdílný.
41
Ventilace-perfúze Hlavní dvě determinanty koncentrace kyslíku v krvi.
V" - ventilace – vzduch, který se dostal do plic "Q" - perfusion – krev, která se dostala do plic Hlavní dvě determinanty koncentrace kyslíku v krvi.
42
Ventilace-perfúze Vztah ventilace- perfúze je možno posuzovat dle výpočtu rozdílu pO2 mezi alveoly (a) a arteriálním řečištěm (A). Normální PAO2-PaO2 gradient = 10, během dekády se může zvyšovat až na 50.
43
Výměna plynů Vyžaduje tlakový gradient mezi alveolárním vzduchem a krví Krátkou vzdálenost pro difúzi plynů Tkáň permeabilní pro O2 a CO2
44
O2 P2 závisí na celkovém alveolárním tlaku a na tlaku ostatních plynů v alveolu Suma parciálních tlaků všech plynů se rovná celkovému l alveolárnímu tlaku Parciální tlak každého plynu ve směsíi plynů je úměrný svému podílu ve směsi Proto Pa2 je možn o zvýšit: Zvýšením alveolárního tlaku Zvýšením podílu kyslíku v alveolárním vzduchu Zvýšení koncentrace kyslíku ve vdechovaném vzduchu zvyšuje podíl kyslíku v alvelárním vzduchu a snižuje podíl dusíku Parciální tlak H2O v alveolárním vzduchu zůstává konstantní a proto se nepřispívá ke změnám PaO2. Změny PCO2 ovlivňují pO2 Ke změnám PaO2 přispívají změny: PACO2 Alveolárního tlaku Koncentrace vdechovaného kyslíku Ventilace
45
Eliminace CO2 z plic CO2 elimination is largely dependent on alveolar ventilation (CO2 crosses the alveolar membrane very readily and so diffusion abnormalities and shunting (see below) have little effect on CO2 elimination). Alveolar ventilation = Respiratory rate x (tidal volume-dead space) Anatomical dead space is constant but physiological dead space depends on the relationship between ventilation and perfusion. Therefore changes in PACO2 are dependent on: respiratory rate tidal volume ventilation-perfusion matching
47
Shunty Forma poruchy ventilace- perfúze s alveoly, které nejsou ventilovány (v důsledku kolapsu nebo edému), ale jsou ještě perfundovány. Efekt terapie kyslíkem velmi malý. Hypoxická plicní vazokonstrikce redukuje průtok neventilovanými alveoly a redukujme závažnost hypoxémie. Příčiny: srdeční Vady s pravolevým zkratem plicní pneumonie plicní edém atelektáza kolaps krvácení kontuze plic
48
Ventilace bez perfúze Vzduch se dostává do alveolů i z alveolů, ale aleveoly nejsou perfundovány, takže nedochází k výměně plynů. Ventilave je neefektivní. Postižené části plic nepřispívají vk výměněn plynů. Zvětšuje se mrtvý prostor. Kompenzace přes zvýšení ventilace v důsledku vyššího PCO2. Příčiny: Nízký srdeční výdej Vysoký intraalveolární tlak, který vede ke kompresi nebo napětí alveolárních kapilár (mechanicky ventilovaní pacienti)
49
Poruchy difúze abnormální alveolární membrána nebo redukce počtu alveolů, která ma za následek redukci povrchu alveolů Příčiny: Akutní Respiratory Distress Syndrome Fibrotické onemocnění plic
50
Alveolární hypoventilace
Ventilace nedostatečná pro adekvátní gradienty pO2 a pCO2.
51
Causes of hypoventilation
Brainstem brainstem injury due to trauma, haemorrhage, infarction, hypoxia, infection etc metabolic encephalopathy depressant drugs Spinal cord trauma, tumour, transverse myelitis Nerve root injury Nerve trauma neuropathy eg Guillain Barre motor neuron disease Neuromuscular junction myasthenia gravis neuromuscular blockers Respiratory muscles fatigue disuse atrophy myopathy malnutrition Respiratory system airway obstruction (upper or lower) decreased lung, pleural or chest wall compliance
52
Monitoring respirace Clinical The signs of respiratory failure are signs of respiratory compensation, increased sympathetic tone, end-organ hypoxia, haemoglobin desaturation Signs of respiratory compensation tachypnoea tachypnoea is a very good indicator of a severely ill patient use of accessory muscles nasal flaring intercostal, suprasternal or supraclavicular recession Increased sympathetic tone tachycardia hypertension sweating End-organ hypoxia altered mental status bradycardia and hypotension (late signs) Haemoglobin desaturation cyanosis Pulse oximetry estimates arterial saturation not PaO2 using absorption of two different wavelengths of infrared light the relationship between saturation and PaO2 is described by the oxyhaemoglobin dissociation curve
53
Ventilace-perfúze Vztah mezi ventilací a perfúzí ([Vdot]A) a ([Qdot]) je variabilní ve zdraví i v nemoci. U zdravých jedinců: Ventilace s redukovanou perfúzí (fyziologický mrtvý prostor) Perfúze s edukovanou ventilací (fyziologický shunt).
55
Hypoxémie Zvýšený fyziologický shunt vede k arteriální hypoxémii, normálně kompenzované hyperventilací normálně perfundovaných alveolů. Pokud to není možné, zvyšuje se alveolární a arteriální pCO2. CO2 –roztok v plasmě, objem proporcionální parciálnímu tlaku. Kyslík přenášen ve vazbě na hemoglobin a vztah mezi objemem a parciálním tlakem není lineární (to vyplývá z disociační křivky hemoglobinu).
57
Intermitentní hypoxie
Intermitentní hypoxie je efektivní stimulus pro navození respiračních, kardiovaskulárních a metabolických adapračních reakcí, které jsou normálně přítomné u kontinuální chronické hypoxie. Dlouhodobé následky chronické intermitentní hypoxie jsou hypertenze, poruchy cévního zásobení srdce a mozku, rozvoj vývojových a neurokogniotivních deficitů a neurodegenerace.
58
Chronická intermitentní hypoxie
Signifikantně zvyšuje masu pravé srdeční komory, vede k remodelaci plicní cirkulace a k pulmonální hypertenzi Omezuje růst plodu Zvyšuje incidenci hypertenze, vývpjových defektů, neuropatologických a neurokognitivních deficitů, Zvyšuje vnímavost vůči oxidativnímu stresu Snad zvyšuje incidenci myokardiálních a mozkových infarktů u pacientů s obstrukční spánkovou apnoe (OSA). OSA je charakterizována epizodickými obstrukcemi dýchacích cest (často více než 60x za hodinu) se signifikantní desaturací hemoglobinu (50%). Tento stav je korelován nejen s hypoxií, ale také s hyperkapnií a s přerušováním spánku.
59
Chronická hypoxie Indukuje proliferaci cévních stěn stimulací angiogenezi a změnami integrity cévních stěn se změnou jejich permeability. Vaskulární endoteliální růstový faktor (VEGF) ve spolupráci s integriny vede ke tvorbě a udržování cév. Hypoxie ovlivňuje dynamiku tohoto procesu indukcí angiogeneze prostřednictvím její schopnosti upregulovat VEGF. Tento proces vede ke zvýšení kapilární denzity a zároveň k destabilizaci cévní integrity. V důsledku zvýšené permeability cév dochází k úniku bílkovin a vody přes krevně mozkovou bariéru, což vede k poruchám funkce mozku.
60
Hypoxie a mozek Není dosud jasné, zda hypoxie (intermitentní nebo chronická) poškozuje mozek neurotoxickými mechanismy. Toxické poškození excitačních mechanismů zřejmě začíná vážným metabolickým stresem, který má za následek signifikantní zvýšený tok kalcia přes glutamergní receptory. Další cestou pro poškození mozku je zvýšení tvorba volných kyslíkovách radikálů a peroxinitritů (NO), které ovlivňují aktivitu proteinů, indukují apoptózu, ale v závislosti na přítomnosti trofických faktorů. Účinky těchto faktorů nejsou v současnosti zcela jasné.
61
Hypoxie a transkripce genů
Schopnost hypoxie navodit dlouhodobé adaptační změny v organismu závisí na její schopnosti indukovat genomické změny. Regulace exprese mnohých genů zácisí na aktivaci transkripčního faktoru senzitivního na hypoxii, hypoxia-inducible factor 1 (HIF-1). HIF-1 je heterodimer skládající se ze dvou podjednotek HIF-1 alfa a HIF-1 beta. Hladiny kyslíku přímo regulují expresi komponenty HIF-1 alfa v závislosti na stupni hypoxie s postupným nárůstem exprese mezi 20 to 5% O2 a podpořeným nárůstem pod 5% O2 ve vdechovaném vzduchu. Protože tkáňový PO2 je normálně torrů, HIF-1 musí být extrémě senzitivní na změny v tkáňové oxygenacii. Dynamika exprese HIF-1 je vysoká, což umožňuje účast exprese HIF-1 i u intermitentní hypoxie, umožńující zvýšení angiogenezi, erytropoézy a glykolýzy.
62
HIF-1 HIF-1 je za normoxických podmínek ubikvitinován a následně degradován během 5 minut. Při nízké hladině O2 (<5% O2) je HIF-1 stabilizován, což vede k tvorbě funkčního komplexu transkripčního faktoru s ARNT (aryl hydrocarbon receptor nuclear translocator) . Tento komplex aktivuje geny účastnící se v následných změnách angiogenezy, erytropoézy a metabolismu glukózy.
64
HIF-1 O2 reguluje rychlost degradace HIF-1.
V normooxických podmínkách dochází k O2-dependentní hydroxylaci of proline (P) 402 a 564 v HIF-1 enzymem PHD (prolyl hydroxylase-domain protein), což je podmínkou vazby von Hippel–Lindau (VHL) tumor-supresorového protenu, který je rozpoznávací komponentou pro E3 ubiquitin-protein ligázu. Vazba VHL je podporována také acetylací lysinu lysine (K) 532 pomocí ARD1 acetyltransferázy. Ubiquitylace HIF-1 zaměří protein pro degradaci 26S proteazomem. O2 také reguluje interakci HIF-1 s transkripčními koaktivátory. O2-dependentní hydroxylace asparaginu (N) 803 v HIF-1 enzymem FIH-1 („factor inhibiting HIF-1“) blokuje vazbu p300 a CBP na HIF-1 a tak inhibuje transkripci genů modulovanou HIF-1. Za hypoxických podmínek se snižuje rychlost hydroxylace asparaginu i prolinu. VHL se nemůže vázat na HIF-1, který není hydroxylován na prolinech, což vede ke snížení degradace HIF-1. p300 a CBP se naproti tomu mohou vázat na HIF-1, který není hydroxylován v poloze asparaginu, což umožňuje transkripci cílových genů pro HIF-1 Zkratky: bHLH, basic helix–loop–helix; PAS, Per-Arnt-Sim; TAD-C, carboxy-terminal transactivation domain; TAD-N, amino-terminal transactivation
66
Cyanóza Cyanóza je modravé zbarvení kůže a sliznic. Vzniká tehdy, je-li v kapilární krvi více redukovaného hemoglobinu než 50 g/l krve. Pro vznik cyanózy není rozhodující poměr redukovaného hemoglobinu a oxyhemoglobinu, ale absolutní množství redukovaného hemoglobinu v kapilární krvi. To vysvětluje skutečnost, že při výraznější anémii s hypoxémií se cyanóza nevyskytuje, a naopak polyglobulie vznik cyanózy usnadňuje. Typy cyanózy centrální periferní.
67
Cyanóza Centrální cyanóza (celková, arteriální, anoxická)
Je charakterizována sníženou kyslíkovou saturací krve vypuzené z levého srdce. Typy srdeční plicní. Arteriální krev, proudící k tkáním, není dostatečně saturovaná kyslíkem a obsahuje jisté množství redukovaného hemoglobinu. Při průtoku krve tkáněmi se odebírá potřebné množství kyslíku a tím se množství redukovaného hemoglobinu zvyšuje.
68
Cyanóza Respiračně podmíněná centrální cyanóza vzniká při nedostatečném okysličování krve v plicích, především při různých onemocněních plic a při plicním městnání. Krev opouští plicní řečiště a dostává se do levého srdce nedostatečně saturovaná kyslíkem a obsahuje již výraznější množství redukovaného hemoglobinu. Nejčastější příčinou centrální cyanózy z nedostatečného okysličování krve v plicích je alveolární hypoventilace, porucha difúze, smíšené příčiny. Uplatňují se také venoarteriální intrapulmonální zkraty. Centrální cyanózy vznikající ze srdečních příčin lze rozlišit od plicních kromě anamnézy a fyzikálního vyšetření také inhalací kyslíku. Cyanóza z plicních příčin při inhalaci kyslíku zřetelně ustupuje a může zcela vymizet, kdežto u nitrosrdečních zkratů cyanóza přetrvává.
69
Cyanóza Častá je kombinace periferního typu cyanózy s cyanózou centrální. Rozlišení centrální cyanózy od periferní: Při centrální cyanóze je cyanotický i jazyk, při periferní cyanóze je jazyk růžový. Masírujeme-li ušní lalůček, při periferní cyanóze zrůžoví. Při centrální cyanóze zůstává ušní lalůček během masírování cyanotický. Kůže je při centrálním typu cyanózy teplá (teplá cyanóza), kdežto při periferní cyanóze je studená (studená cyanóza). Při centrální cyanóze je zvýšeno množství erytrocytů (sekundární polyglobulie) a nemocný má paličkovité prsty; při periferní cyanóze jsou hodnoty hemoglobinu a erytrocytů normální a paličkovité prsty nejsou vyznačeny. Při centrální cyanóze je snížena saturace arteriální krve kyslíkem, při periferní cyanóze je sycení arteriální krve kyslíkem normální.
70
Cyanóza Periferní typ cyanózy (akrální, venózní, stagnační) Je podmíněn stagnační hypoxií, vedoucí ke zvýšené extrakci kyslíku z krve při zpomaleném průtoku krve tkáněmi. K tomuto stavu dochází typicky u pravostranného srdečního selhávání. Nejlépe je patrná na rtech, na uších, na nose a na konečných částech prstů rukou i nohou (akrální cyanóza). Častá je kombinace periferního typu cyanózy s cyanózou centrální.
72
Astma Časté chronické onemocnění dýchacích cest.
Symptomy: kašel, pískoty, pocit tíže na hrudníku a zkrácení dechu, často zhoršení stavu v noci. 3 patogenetické charakteristiky: Zánět dýchacích cest se ztluštěním stěn a zvýšenou permeabilitou kapilár Hypersekrece hlenu Kontrakce hladké svaloviny bronchů
73
Patogeneze astmatu Bronchioly se zužují.
Rozvíjí se atelektáza (mikroskopická, segmentální nebo lobární) v důsledku kompletní obstrukce hlenovou zátkou nebo v důsledku edému dýchacích cest. Pokles poměru ventilace/ perfúze vede ke snížené saturaci arteriální krve kyslíkem. Hyperinflace plic a hyperexpanze hrudníku snižuje funkčnost a účinnost dýchacího svalstva.Rozvíjí se emfyzém.
75
Etiopatogeneze astmatu
77
Patogeneze astmatu Antigen-prezentující buňky (dendritické) aktivují Th2 T buňky a způsobují uvolnění cytokinů z těchto buněk, které atrahují mastocyty a eozinofily. IL-9 a IL-4 aktivují mastocyty k uvolnění LTC4, PGD2 a histaminu, které působí na hladkou svalovinu a cévy. IL-3, IL-5 a GM-CSF přitahují eozinofily; ty jsou přitahovány také chemokiny, které působí přes receptory typu 3 C-C (CCR-3, tj. eotaxin, RANTES, MCP-1, -3 a -4). Aktivované eosinofily uvolňují LTC4, MBP (větší bazofilní protein), ECP (eozinofilní kationtový protein) a peroxidázu (EPX), která jsou pro epiteliální buňky toxické. IL-4 a IL-13 produkované aktivovanými T buňkami udržují alergickou reakci a způsobují sekreci hlenu a kontrakci hladké svaloviny.
78
Faktory ovlivňující stav plicní cirkulace
79
Mechanismy akutního a chronického zánětu u astmatu a mechanismy remodelace
80
Účinky leukotrienů u astmatu
81
Vztahy mezi patofyziologickými mechanismy a klinickým stavem
82
Klinické souvislosti remodelace dýchacích cest u astmatu (RBM- basální membrána, ECM - extracelulární matrix
83
Remodelace U chronického astmatu dochází k alteraci struktury a funkce formovaných elementů dýchacích cest. Depozice matrix proteinů, otok a celulární infiltrace vedou k expanzi submukózy, což vede ke ztenčení hladké svaloviny a zúžení dýchacích cest. Otok adventicie vede k retrakčním silám z okolních alveolů na velké ploše, což vede k snazšímu uzávěru dýchacích cest. Společně s alterací kontraktility hladké svaloviny se rozvíjí bronchiální hyperresponzivita. Epitel. Ztráta ciliárního epitelu. Metaplazie. Epiteliální bazální membrána. Depozice kolagenů (typy I, III a V) v lamina reticularis. Depozice lamininu, tenascinu a fibronektinu + kolagenů vede ke ztluštění bazální membrány
84
Remodelace Fibroblasty byly transformovány na kontraktilní myofibroblasty. Aberantní signalizace mezi epitelem a myofibroblasty (produkce epidermálního růstového faktoru(EGF), transformujícího růstového faktoru (TGF-β), z destiček derivovaného růstového faktoru (PDGF), endotelinu (ET), insulin-like růstových faktorů (IGF), nervových růstových faktorů a vaskulárního endoteliálního růstového faktoru). Reaktivace fetálních interakcí mezi epitelem a mezenchymální tkání v průběhu astmatu? Hladká svalovina. Hyperplazie. Snazší a prolongovaná kontrakce v důsledku změny aktin-myozinového cyklu. Nervy. Centrální a periferní reflexy se podílí na zvýšení dráždivosti dýchacích cest.
85
Remodelace Makrofágy a lymfocyty. Zmnožené ve slizničních membránách dýchacích cest a v alveolech. Makrofágy mají roli ve vychytávání a prezentaci antigenů a alergenů lymfocytům. Uvolňují prostaglandiny, thromboxan,leukotrieny C4 a B4 a faktor aktivující destičky). CD4 lymfocyty (helpery) jsou aktivovány. Uvolňují cytokiny, které ovlivňují migraci a aktivaci mastocytů (IL-3, IL-4, IL-9) a eosinofilů (IL-3, IL-5, GM-CSF). Produkce Il-4 udržuje Th2 fenotyp, což podporuje produkci IgE B lymfocyty. Selektivní upregulation Th2 T buněk. To je zřejmě ovlivněno zejména dendritickými buňkami.
86
Typy astmatu Extrinsické – jasná externí příčina
Intrinsické nebo kryptogenní – není možno identifikovat vyvolávající příčinu. Extrinsické astma se objevuje u atopiků s pozitivními kožními prick testy na inhalační alergeny (90% dětí s perzistentním astmatem, pouze 50% dospělých). Dětské astma často ekzémem. U dospělých často souvislost s pracovním zaměřením. Intrinsické astma začíná ve středním věku (‚pozdní začátek').
88
Alergie a atopie Atopie: Familiární výskyt
Charakteristické reakce na alergeny z prostředí Přítomnost cirkulujících protilátek. IgE protilátky přítomny u 30-40% populace Korelace mezi IgE hladinami v séru a hyperreaktivitou dýchacích cest. Genetické faktory a faktory prostředí ovlivňují hladiny IgE. Kandidátní geny pro IL-3, IL-4, IL-5, IL-9, IL-13 a GM- CSF –cluster na 5q31-33. Hygienická teorie vzniku astmatu
89
Antigeny způsobující alergickou rinitidu a astma
90
Chronická obstrukční bronchoplumonální nemoc (CHOPN)
Skládá se ze dvou stavů 1. Chronická bronchitis je symptomatická definice, u níž je Produkce zvýšeného množství hlenu v průběhu celého roku. Symptomy jsou obvykle horší v zimě. Pro epidemiologické účely je definice: produkce sputa po většinu dní přinejmenším 3 měsíce v roce alespoň ve dvou po sobě jdoucích letech. Přítomnost hyperplazie hlenových žlázek v dýchacích cestách.
91
Chronická obstrukční bronchoplumonální nemoc (CHOPN)
2. Emfyzém je definován jako dilatace a destrukce plicní tkáně distálně od terminálního bronchiolu Radiologický korelát při ztrátě více než 40% tkáně: Zesvětlení plic Rozšíření postižené tkáně (vzduch) Funkčně: Ztráta elastických vlastností plic a kolaps malých dýchacích cest během exspirace. Zadržování vzduchu, nárůst reziduálního objemu.
92
Emfyzém Typy Centriacinární.
Distenze a poškození plicní tkáně kolem respiračních bronchiolů, distální alveolární dukty a alveoly obvykle nepoškozeny. Nejčastější typ emfyzému. Panacinární emfyzém Méně častý. Distenze a destrukce postihuje celý acinus, plíce se v nejhorším případě stanou bulózní Závažná porucha ventilace-perfúze. Příčinou často deficit α-1-antitrypsinu. Netypický emfyzém Jizvící, postihující plíce bez vztahu ke struktuře.
93
Polymerizace Z α1-Antitrypsinu vysvětluje vznik jaterních inkluzí
a zvýšené riziko rozvoje CHOPN
95
FEV1- forsírovaný exspirační volum za první sekundu výdechu
FVC- forsírovaná vitální kapacita
96
Chronická obstrukční nemoc bronchopulmonální: diagnostická kritéria
97
Epidemiologie CHOPN
98
Patogeneze CHOPN Kouření:
Zvyšuje počet neutrofilních granulocytů v dýchacích cestách. Granulocyty jako zdroje elastáz a proteáz, které podporují rozvoj emfyzému Inaktivuje α-1- antitrypsin Podporuje rozvoj hypertrofie slizničních žlázek Zhoršuje účinek surfaktantu. Infekce Častá přítomnost Deficit α1-antitrypsinu α1-antitrypsin inhibuje neutrofilovou elastázu, která je schopna destruovat plicní tkáň. Prokázáno cca 75 alel v genu pro α1-antitrypsin.
99
Typy A a B Typ A je „pink puffer“. Příznaky: Závažná dušnost
PaO2 a PaCO2 v krvi blízko nomálním hodnotám Cor pulmonale nepřítomno. Předpokládá se větší podíl emfyzému než bronchitidy. Typ B je „blue bloater“. Příznaky: Malá nebo žádná dušnost Arteriální hypoxémie a hyperkapnie Sekundární polycytémie Cor pulmonale. Předpokládá se převaha chronické bronchitidy.
100
Patologické rysy chronické bronchitidy a emfyzému
101
Obstrukční spánkové apnoe
Vyskytuje se u mužů středního věku s nadváhou, případně u dětí s velkými tonzilami. Objevuje se v důsledku relaxace měkkého patra během spánku, zejména během REM fáze. Pacient se probouzí v důsledku snahy zvýšit ventilaci a v důsledku hypoxické stimulace dýchacího centra. To se může dít až 100 x za noc, což vede ke spánkové deprivaci, především REM spánku. Spolupůsobícími faktory je obezita, malý faryngeální otvor a CHOPN.
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.