Stáhnout prezentaci
Prezentace se nahrává, počkejte prosím
1
Gymnázium, Broumov, Hradební 218
Vzdělávací oblast: Základní poznatky z matematiky Číslo materiálu: EU090126 Název: Základní množinové pojmy Autor: Mgr. Ludmila Lorencová Datum ověření: Třída: 5. V Doporučený čas: 30 minut Stručná anotace Prezentace je určena k osvojení a procvičení základních množinových pojmů. Materiál byl vytvořen v rámci projektu „Gymnázium Broumov“ v OP Vzdělávání pro konkurenceschopnost, reg. č. CZ.1.07/1.5.00/
2
Základní množinové pojmy
3
Charakteristika množiny:
souhrn nějakých předmětů ( objektů) předměty ( objekty) nazýváme prvky množiny zapisujeme: x є A čteme: x je prvkem množiny A
4
Pozor!! Množina, která neobsahuje žádný prvek se nazývá prázdná množina zapisujeme Ø Množina, která obsahuje nekonečně mnoho prvků se nazývá nekonečná Např. Množina všech přirozených čísel
5
Podmnožina Množina A je podmnožinou množiny B právě tehdy, když platí, že každý prvek množiny A je zároveň prvkem množiny B. značíme: lze zapsat:
6
Rovnost množin Množiny A, B se rovnají (zapisujeme A = B) právě tehdy, když každý prvek množiny A je prvkem množiny B a zároveň každý prvek množiny B je prvkem množiny A. Zapíšeme např.: a zároveň
7
Doplněk množiny Množina B je podmnožinou množiny A, potom doplněk množiny B v množině A je množina všech prvků z A, které nepatří do B. Zapisujeme: A B
8
1. Zapiš všechny podmnožiny množiny { 4;5;6}: {4} {5} {6} {4;5} {4;6} {5;6} {4;5;6} Ø 2.Je dána množina A = {1;2;3;π} . Urči, které z následujících množin jsou jejími podmnožinami: a) A = {1;2;3;π} b) B = {1; π} c) C = {0;1} d) D = = ∅ 3. Rozhodni, které z následujících množin se rovnají. A = { x ∈Z; x>0} , B ={ x ∈Z; Ix −2I<2}, C =N , D= { x ∈N; x<4} 4. Urči doplňky následujících množin v množině Z. a) A= { x ∈Z; x< 3} b) B =N c) C ={x ∈Z; x ≥IxI } d) D= {x ∈ Z; IxI > 0}
9
1. Zapiš všechny podmnožiny množiny { 4;5;6}: {4} {5} {6} {4;5} {4;6} {5;6} {4;5;6} Ø 2.Je dána množina A = {1;2;3;π} . Urči, které z následujících množin jsou jejími podmnožinami: a) A = {1;2;3;π} b) B = {1; π} c) C = {0;1} d) D = = ∅ A, B, D 3. Rozhodni, které z následujících množin se rovnají. A = { x ∈Z; x>0} , B ={ x ∈Z; Ix −2I<2}, C =N , D= { x ∈N; x<4} A = C, B = D 4. Urči doplňky následujících množin v množině Z. a) A= { x ∈Z; x< 3} b) B =N c) C ={x ∈Z; x ≥IxI } d) D= {x ∈ Z; IxI > 0} a) A′={x ∈ Z; x≥ 3} b) B′={x∈Z; x≤0} c) C′ = {-1;-2;-3...} d) D x Z x Z ′ = ∈ ≤ = { ; 0 0 } { }
10
Zdroje: Polák J.: Přehled středoškolské matematiky. SPN Praha 1991
Petáková J.: Matematika – příprava k maturitě a k přijímacím zkouškám na vysoké školy. Prometheus Praha 2009 Bušek I.,Calda E.: Matematika pro gymnázia: základní poznatky z matematiky. Prometheus Praha 2009.
Podobné prezentace
© 2024 SlidePlayer.cz Inc.
All rights reserved.